Cloud microphysics Claudia Emde

Meteorological Institute, LMU, Munich, Germany

WS 2011/2012

・ロト ・回ト ・モト ・モト

Introduction

Cloud microphysics

Contents

Reference

Atmospheric thermodynamics

Cloud formation and cloud dynamics

Cloud movies by B. Mayer

Cloud types

Hohe Wolken	Mittelhohe Wolken	Tiefe Wolken
11 Galerien - 225 Bilder	20 Galerien - 422 Bilder	10 Galerien - 207 Bilder
Vertikale Wolken	Optische Erscheinungen	Blitze
31 Galerien - 652 Bilder	8 Galerien - 153 Bilder	4 Galerien - 75 Bilder
-	-	
Regenbögen 6 Galerien - 103 Bilder	Sonstiges 15 Galerien - 299 Bilder	Niederschläge 12 Galerien - 239 Bilder
© 1998-2011: Bernhard Mühr, 10. April 2011		info@wolkenatlas.de
• • •		- /

http://www.wolkenatlas.de/

Rain drops

Figure 1] Topological changes of falling drops and fragmentation. Top row: series of events of the fragmentation of a $d_0 = 6$ mm water drop falling in an according testam of in at . The time interval between each image is $\Delta I = 4$, 7m. Stress factors the flattening of the drop into a pancake shape, the initiation of a bag bordered by a thicker corrugated irm, its break-up and the destabilization of the rim initiation of a single stress factors and the destabilization of the rim initiation disting to dispinet drops distributed in a size. Middle row as similar series defining the initial idments $\Delta O(B)$ are distributed and shape $\xi(r,t)$ and the distribution of the rim itself (highlighted in the instel), leaging to dispinet did drops size. Abstom row: the formation of a bags for narrandaror for the initial idment bag, which secures its bord D = 0 mm and $\Delta t = 7$ pms.

Villermaux et al. Nature Physics, 2009

・ロト ・日・ ・ ヨ・

Ice crystals

In situ measurements of ice crystals in a tropical cirrus cloud

Heymsfield et al., Journal of Atmospheric Sciences, 2002

Cloud microphysics

Snow flakes

www.snowflakes.com by K.G. Libbrecht

 $\langle \Box \rangle \langle \Box \rangle$

Energy balance of the Earth

IPCC report, 2007

< □ ▶ < □ ▶ < 直 ▶ < 直 ▶ < 亘 ▶ 三 の Q () October 20, 2011 7/16

References

Atmospheric thermodynamics

Impact of clouds on climate change

Radiative Forcing Components

IPCC report 2007

<□> <@> < E> < E> E の

Introduction

Atmospheric thermodynamics

IPCC Bericht 2007

"Cloud feedbacks (particularly from low clouds) remain the largest source of uncertainty."

IPCC Report 2007, Technical Summary

Overview of cloud physics

- Atmospheric thermodynamics
- Microphysics of warm clouds
 - Nucleation of water vapor by condensation
 - Growth of cloud droplets in warm clouds (condensation, fall speed of droplets, collection, coalescence)
 - formation of rain
- Microphysics of cold clouds
 - homogeneous nucleation
 - heterogeneous nucleation
 - contact nucleation
 - crystal growth (from water phase, riming, aggregation)
 - formation of precipitation
- Observation of cloud microphysical properties
- Parameterization of clouds in climate and NWP models

- John M. Wallace and Peter V. Hobbs. *Atmospheric Science, An introductory survey*. Elsevier, 2006.
- R. R. Rogers. *A short course in cloud physics*. Pergamon Press, 1976.
- Hans R. Pruppacher and James D. Klett. *Microphysics of clouds and precipitation*. Springer, 1996.
- IPCC. Climate change 2007. Technical report, Intergovernmental Panel of Global Climate Change, 2007.

Additional publications and slides on website: www.meteo.physik.uni-muenchen.de/~emde/doku.php?id= teaching:cloud_microphysics:cloud_microphysics

Written exam in last week of semester: 9th February 2012, 14-16 h

Please let me know if date is inconvenient!

Introduction

Contents

Reference

Atmospheric thermodynamics

Gas laws and the ideal gas equation

Sir Robort Boyle (1627–1691)

Jacques Charles (1746-1823)

pV = mRT $p\alpha = RT$ $pV = nR^*T$ $p = n_0kT$

John Dalton (1766–1844) Images from Wikipedia

Ludwig Boltzmann (1844–1906)

Cloud microphysics

References

Atmospheric thermodynamics

The hydrostatic equation

$$\frac{\partial p}{\partial z} = -g\rho \qquad gdz = -\alpha dp$$

Sir Issac Newton (1642–1727) Image from Wikipedia

First law of thermodynamics

Fig. 3.4 Representation of the state of a working substance in a cylinder on a p-V diagram. The work done by the working substance in passing from P to Q is $p \, dV$, which is equal to the blue-shaded area. [Reprinted from *Atmospheric Science: An Introductory Survey*, 1st Edition, J. M. Wallace and P. V. Hobbs, p. 62, Copyright 1977, with permission from Elsevier.] Figure from Wallace and Hobbs

energy conservation

$$dq = du + dw$$

$$dq = du + pd\alpha$$

$$dq = c_p dT - \alpha dp$$

...

Adiabatic processes

adiabatic = change in physical state without heat exchange $\Rightarrow dq = 0$

$$dq = du + pd\alpha$$

T rises in adiabatic compression T=const. in isothermal process

 $T_C > T_B \Rightarrow p_C > p_B$