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Introduction

Cloud formation and cloud dynamics

Cloud movies by B. Mayer
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Introduction

Cloud types
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Introduction

Rain drops

) ﬁ «
Ll

Figure 2 | Topological changes of falling drops and fragmentation. Top row: series of events of the fragmentation of a do = 6 mm water drop falling in an
ascending stream of air. The time interval between each image is At =4.7ms. The sequence shows first the flattening of the drop into  pancake shape, the
inflation of a bag bordered by a thicker corrugated rim, its break-up and the destabilization of the rim itself (highlighted in the inset), leading to disjointed
drops distributed in size. Middle row: a similar series defining the initial diameter do, the bag thickness h(t), its radius R(t) and shape £(r,t), and the final
drop size d. Bottom row: the formation of a bag is not mandatory for the initial drop to break up. However, its fragmentation is always preceded by a change
of topology into a ligament shape, which often occurs without bag inflation. The sequence is for do = 6 mm and At=7.9ms,

Villermaux et al. Nature Physics, 2009
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Ice crystals
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Snow flakes

www . snowflakes.com by K.G. Libbrecht
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Energy balance of the Earth
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Absorbed by Greenhouse
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Reflected by 3 324
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30 Radiation
390
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Surface transpiration Absorbed by Surface

IPCC report, 2007
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Introduction

Impact of clouds on climate change

Radiative Forcing Components
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IPCC

Bericht 2007

Cloud feedback parameter: 2 X CO,

-04 |-

AR4 Models

1 1 1 1 1 1 1
D FHBA C G J
Model
Ringer et al., GRL 2006

Cloud microphysics

“Cloud feedbacks (particularly
from low clouds) remain the
largest source of uncertainty.”

IPCC Report 2007, Technical Summary
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Overview of cloud physics

@ Atmospheric thermodynamics
@ Microphysics of warm clouds
@ Nucleation of water vapor by condensation
o Growth of cloud droplets in warm clouds (condensation, fall speed
of droplets, collection, coalescence)
e formation of rain
@ Microphysics of cold clouds
e homogeneous nucleation
@ heterogeneous nucleation
@ contact nucleation
crystal growth (from water phase, riming, aggregation)
o formation of precipitation

@ Observation of cloud microphysical properties
@ Parameterization of clouds in climate and NWP models
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Atmospheric thermodynamics
L]

Gas laws and the ideal gas equation

Sir Robort Boyle (1627—1691)

pV=mRT pa=RT pV=nRT p=nokT J

Z Ry Bl s

John Dalton Amedeo Avogadro .
(1766-1844) 47761 sge) Ludwig Boltzmann
Images from Wikipedia (1 844—1 906)
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Atmospheric thermodynamics

The hydrostatic equation

~ Column with unit
cross-sectional op
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Figure from Wallace and Hobbs Sir Issac Newton (1642—-1727)

Image from Wikipedia
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First law of thermodynamics

Working =
substance

B | Piston

Pressure —

Fig. 3.4 Repres

— Distance, x

Vy V(_) V,
av
Volume

entation of the state of a working substance

in a cylinder on a p—V diagram. The work done by the work-

ing substance in passing from P to Q is p dV, which is equal to

the blue-shaded area. [Reprinted from Atmospheric Science: An
Introductory Survey, 1st Edition, J. M. Wallace and P. V. Hobbs,
p. 62, Copyright 1977, with permission from Elsevier.]

Figure from Wallace and Hobbs

Cloud microphysics

dq
dq
aq

Atmospheric thermodynamics
L]

conservation

du + dw
du + pdo
CpdT — adp
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Atmospheric thermodynamics
L]

Adiabatic processes

adiabatic = change in physical state without heat exchange = dq = 0 )

f dq = du + pda
el s o T rises in adiabatic
§ i A compress.ior)
T=const. in isothermal
Volume process
Fig. 3.5 Anisotherm and an adiabat on a p—V diagram.
Figure from Wallace and Hobbs Tc>Tg = Pc > PB
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