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Abstract

We examine the physical mechanisms governing the formation of snow crystals, treating this
problem as a case study of the dynamics of crystal growth from the vapour phase. Particular
attention is given to the basic theoretical underpinnings of the subject, especially the interplay
of particle diffusion, heat diffusion and surface attachment kinetics during crystal growth, as
well as growth instabilities that have important effects on snow crystal development.

The first part of this review focuses on understanding the dramatic variations seen in Snow
crystal morphology as a function of temperature, a mystery that has remained largely unsolved
since its discovery 75 years ago. To this end we examine the growth of simple hexagonal ice
prisms in considerable detail, comparing crystal growth theory with laboratory measurements
of growth rates under a broad range of conditions. This turns out to be a surprisingly rich
problem, which ultimately originates from the unusual molecular structure of the ice surface
and its sensitive dependence on temperature. With new clues from precision measurements of
attachment kinetics, we are now just beginning to understand these structural changes at the
ice surface and how they affect the crystal growth process. We also touch upon the mostly
unexplored topic of how dilute chemical impurities can greatly alter the growth of snow crystals.

The second part of this review examines pattern formation in snow crystals, with special
emphasis on the growth of snow crystal dendrites. Again we treat this as a case study of
the more general problem of dendritic growth during diffusion-limited solidification. Since
snow crystals grow from the vapour, we can apply dendrite theory in the simplified slow-
growth limit where attachment kinetics dominates over capillarity in selecting the tip velocity.
Although faceting is quite pronounced in these structures, many aspects of the formation of
snow crystal dendrites are fairly well described using a theoretical treatment that does not
explicitly incorporate faceting. We also describe electrically modified ice dendrite growth,
which produces some novel needle-like structures.
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1. Introduction

Snow crystals, also called snowflakes, are single crystals of ice that grow from water vapour.
They form in copious numbers in the atmosphere and are well known for their elaborate,
symmetrical patterns. The physics of snow crystal formation is a specific example of the
more general problem of how crystals grow and develop, creating complex structures on many
length scales in the process. Because crystallization is a basic phase transition and crystals
make up the foundation of several major industries, much effort has been expended toward
developing a detailed understanding of the physics of crystal nucleation and growth. There is
also a considerable literature on pattern formation during solidification. Beyond the intrinsic
scientific merit of these problems, the burgeoning commercial interest in the self-assembly of
nano-scale devices has reinvigorated our desire to understand just how solidification produces
ordered, and sometimes complex, structures from disordered precursors.

Structure formation during crystal growth is a rich many-body problem, for which there
are few overarching theories and perhaps even fewer uncomplicated experimental systems. In
part this reflects the fact that many factors contribute to crystal growth, including both large-
scale phenomena (e.g. particle and heat transport) and microscopic dynamics (e.g. surface
diffusion and chemistry). Different crystals grown under different conditions exhibit a broad
range of morphologies, growth rates and other characteristics, reflecting the variety of physical
mechanisms that influence crystal growth. The inherent complexity of the physics has resulted
in arather large gap between the basic tenants of crystal growth theory and the phenomenology
of growing practical crystals.

1.1. Ice as a case study

In many ways, the formation of ice crystals from the vapour phase is an excellent case
study of crystal growth dynamics and pattern formation during solidification. Although
it appears to be a relatively simple monomolecular physical system, the growth of snow
crystals exhibits a surprisingly rich behaviour as a function of temperature, supersaturation
and other external parameters. As we will see below, a great deal of this behaviour remains
unexplained, even at a qualitative level. Thus there is much to be learned, and ample potential
that a better understanding of ice will contribute to our overall understanding of crystal growth
and solidification. Taking the next step beyond the monomolecular system, ice crystal growth
from water vapour is known to be quite sensitive to chemical influences at the growing surface,
so again ice is an excellent case study for the more general, and exceptionally diverse, problem
of chemically mediated crystal growth.

While the physics of snow crystal formation is an excellent crystal growth problem,
it also touches on several environmental and meteorological issues, simply because ice
crystals often play major roles in atmospheric phenomena. For example, ice crystals are
important in cloud electrification and lightning, via charging mechanisms that involve collisions
between ice particles. These mechanisms depend on details of the ice surface structure
that are still not well understood [1-3]. Also, chemical processes in the upper atmosphere
frequently require the surfaces of ice crystals to boost their reaction rates [4,5]. Most
meteorological phenomena involving ice particles, like the growth of snow crystals, are
influenced to some degree by the structure and dynamics of the ice surface. Thus we
expect they will share some common physics at a fundamental level. A better picture of
the dynamics of the ice crystal surface during growth may also shed light on some of the
many remaining mysteries surrounding the dynamics of the different solid and liquid states of
water [6].
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1.2. Natural snow crystals

Since snow crystals fall from the sky in symmetrical, patterned forms, they have been the source
of considerable curiosity and scientific study for centuries (for detailed historical accounts
see [7-11]). Johannes Kepler was apparently the first person to look at snow crystals with a
scientific eye, writing a short treatise devoted to the subject in 1611, in which he describes the
possible origins of snow crystal symmetry [12]. René Descartes penned an account of many dif-
ferent forms of natural snow crystals in 1637 as part of his famous treatise on weather phenom-
ena, Les Météores (see [7]). These early investigations were followed by numerous accounts
that described, in words and with sketches, the great variety of snow crystal morphologies
found in natural snowfalls [9,10, 13, 14]. With the development of photography in the late 19th
century, Wilson Bentley catalogued several thousand snow crystal images in 1931 that he had
acquired over several decades [15]. Bentley’s images popularized the snow crystal as a winter
icon and were largely responsible for the widespread notion that no two snowflakes are alike.

Some examples of natural snow crystals are shown in figure 1. These are particularly
well-formed and symmetrical specimens, chosen for their photographic appeal and as prime
examples of several of the more common and/or interesting snow crystal forms. Natural snow
crystals have been categorized into morphological types by several different authors [9,17,18],
acquiring names like stellar dendrites, spatial dendrites, sectored plates, hollow columns, bullet
rosettes, capped columns and others [19]. Most natural snow crystals are smaller and less
pristine than those shown in figure 1, and are generally more blocky in appearance, usually
without the high degree of symmetry present in well-formed specimens. Polycrystalline forms
are also exceedingly common. For an unbiased sample the reader is invited to go outside with
a magnifying glass or microscope during a light snowfall. Colder snowfalls usually provide
more symmetrical and faceted crystals, but even warmer conditions often bring some examples
like those shown in figure 1.

1.3. The morphology diagram

The variety of snow crystal forms seen in Bentley’s photographs prompted physicist Ukichiro
Nakaya to perform the first in-depth laboratory study of snow crystal growth in the 1930s [9].
Nakaya not only categorized natural snow crystals under different meteorological conditions,
he was also the first to grow synthetic snow crystals in the laboratory in a controlled
environment. Nakaya observed the different growth morphologies that appeared at different
temperatures and supersaturations and combined these observations into what is called a snow
crystal morphology diagram, shown in figure 2. This diagram refers to snow crystals growing
in air at a pressure near 1 atm, so applies to natural snow crystals. Nakaya’s results have been
confirmed and supplanted by several subsequent investigations [10, 17,20], and the data have

recently been extended to temperatures as low as T = —70°C [21].
These observations reveal a surprisingly complex dependence of crystal morphology on
temperature and supersaturation. Just below freezing, at temperatures near T = —2°C, the

growth is plate-like, with thick plates at lower supersaturations, thinner plates at intermediate
supersaturations, and plate-like dendritic structures at high supersaturations. For temperatures
near T = —5°C, the growth is columnar, with stout columns at the lower supersaturations, more
slender, often hollow columns at intermediate supersaturations, and clusters of thin, needle-like
crystals at higher supersaturations. Colder still, near T = —15°C, the growth again becomes
plate-like, and again one sees increasing structure with increasing supersaturation. The thin,
plate-like crystals shown in figures 1(a)—(c) all grew at temperatures near 7 = —15°C. Finally,
at the lowest temperatures the growth becomes a mixture of thick plates at low supersaturations
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Figure 1. Examples of several different morphological types of snow crystals found in natural
snowfalls in temperate climates. (a) A relatively simple plate-like crystal, 1.4 mm from tip to
tip, showing fairly complex markings. Plates with smooth, featureless facets are less common
in nature, except at low temperatures (I’ < —20°C) and low humidities. (b) A more elaborate
plate-like crystal, 2.1 mm from tip to tip, with an unusually high degree of complex symmetry.
(c) A multi-branched stellar dendrite crystal, 3.0 mm from tip to tip. These typically form at higher
humidities and only when the temperature is near 7 = —15°C. (d) A simple hexagonal columnar
crystal, 0.45 mm in length. Some internal hollowing resulted when the initially hollow ends of
the column grew over. (e) Needle-like crystals, the largest being 1.1 mm in length. Note one
needle grew as a slender hollow column before the ends branched. These crystals only grow near
T = —=5°C. (f) A capped column crystal, 0.6 mm in length. This crystal began growing as a stout
hollow column, and then plate-like stellar crystals grew on the two ends of the column. Photos by
the author [16].
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Figure 2. The snow crystal morphology diagram, showing different types of snow crystals that
grow in air at atmospheric pressure, as a function of temperature and water vapour supersaturation
relative to ice. The water saturation line gives the supersaturation of supercooled water, as might
be found within a dense cloud. Note the morphology switches from plates (7' &~ —2°C) to columns
(T ~ —5°C) to plates (T ~ —15°C) to predominantly columns (7 < —30°C) as temperature is
decreased. Temperature mainly determines whether snow crystals will grow into plates or columns,
while higher supersaturations produce more complex structures. This figure was adapted from a
diagram by Furakawa.

and columns at higher supersaturations. Growth of heavy water (D,0) crystals from the
vapour phase produces similar morphologies as a function of temperature, except shifted by
approximately four degrees, in keeping with the isotopic shift in the freezing point between
D,0 and H,0 [22].

Note that the morphology diagram in figure 2 is not necessarily indicative of all natural
snow crystals, which are often dominated by polycrystalline forms, but rather it reflects the
growth of ice single-crystals [21]. For natural crystals it is also important to note that ice
growth is enhanced when air flows over a growing surface, a phenomenon called the ventilation
effect [23,24].

The variation in snow crystal morphology as a function of temperature is both dramatic and
easily demonstrated. Figure 3 shows some representative laboratory-produced snow crystals,
grown in free-fall in an air-filled cold chamber at temperatures of T = —2°C, —5°C and —15°C
and at intermediate supersaturations. Quantitative data of a similar nature, giving average
crystal dimensions as a function of temperature and growth time, have been presented by several
authors [10,25-27]. The crystals in figure 3 clearly follow the morphology diagram, growing
predominantly as plates at T = —2°C, columns at T = —5°C and plates again at —15°C.

One can also see a substantial variability in crystal size and shape for the crystals in
figure 3, even though they were grown under fairly similar conditions. This reflects the fact
that snow crystal growth is quite sensitive to small changes in temperature, supersaturation and
other factors. This sensitivity is one of the hallmarks of snow crystal growth, and, as we will
see later, this has made it difficult to make crystal growth measurements that are sufficiently
accurate and reproducible that one can definitely discern the different growth mechanisms under
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Figure 3. Examples of laboratory-made snow crystals grown at temperatures 7 = —2°C (left),
T = —5°C (middle), and T = —15°C (right) and supersaturations near water saturation [19].
Vertical scale bars are 100 um long. These crystals were produced in a cold chamber filled with
supersaturated air and photographed after they had fallen onto an observation window at the bottom
of the chamber. Note the dramatic morphological changes from plates at —2°C to columns at —5°C
to plates again at —15°C. Photos by the author [19].

different conditions. As we will see below, explaining the physics behind the snow crystal
morphology diagram, even at a qualitative level, continues to be a surprisingly elusive goal.

1.4. Complexity and symmetry

The sensitivity of snow crystal growth to temperature and humidity allows a straightforward
explanation for the combination of complexity and symmetry seen in many specimens like those
shown in figure 1. Consider the formation of a single snow crystal in the atmosphere. The
story begins inside a cloud, which typically consists of a large number of liquid water droplets
nucleated on minute dust particles. Nucleation into liquid droplets, even at temperatures below
0°C, is an example of Ostwald’s step rule [28]. Pure water droplets of microscopic dimensions
can be supercooled to temperatures as low as T &~ —40°C before freezing via homogeneous
nucleation. Assuming arelatively static cloud, the water droplets in the cloud will supersaturate
the enclosed air to values (relative to ice) as high as the water saturation level shown in figure 1.

If the cloud temperature drops, at around 7 = —10°C the droplets will begin to freeze,
nucleated by their contained dust particles. Since some ice nucleators are better than others,
the droplets will not all freeze simultaneously. A frozen droplet will quickly accumulate water
vapour from the air, which stays supersaturated by virtue of the remaining unfrozen water
droplets. As the nascent snow crystal grows, faceting will often create a simple hexagonal
prism morphology. Diffusion limits the growth as the crystal becomes larger, and eventually
this causes branches to form. Because ice growth is so sensitive to the local environment, it
frequently happens that an abrupt motion of some kind will cause all six corners of a simple
plate-like crystal to sprout arms at the same time.
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As the crystal travels through the cloud, it experiences different temperatures and
humidities along the way, and thus the growth behaviour changes as a function of time. But
of course all six arms experience the same changing conditions as they grow. The result is
a rather complex growth pattern for each arm of the crystal, with all six arms developing
roughly the same pattern. Under ideal conditions—for which the growth must be unperturbed
by collisions with other ice or water particles—a snow crystal can grow into a rather elaborate,
six-fold symmetric shape, like those shown in figure 1. As this scenario is replayed countless
times, the bulk of the liquid water in a cloud is transformed into the solid state.

1.5. The physics of snow crystals

Many aspects of snow crystal growth are well understood at a quantitative level. For example,
we know the crystal structure of ice, the interactions between water molecules, the ice phase
diagram, and much of phase transitions in general. Other pieces of the snow crystal puzzle,
like diffusion-limited growth and the equilibrium structure of the ice surface, are fairly well
understood, at least in a qualitative sense. And then there are some rather basic aspects of this
phenomenon, like the snow crystal morphology diagram, that are not yet understood even at a
qualitative level.

This review will focus on two features of snow crystal growth—(1) the formation of
simple, faceted prism crystals as a function of temperature and supersaturation, which we
will use to examine the physics underlying the morphology diagram, and (2) the transition
to, and growth of, dendritic structures. In particular, we will examine the underlying physical
processes behind these phenomena, in quantitative terms as much as possible. We will call
upon what is known about the detailed physics of kinetics-limited crystal growth, pattern
formation in diffusion-limited solidification, and other areas, but only inasmuch as they apply
to ice crystal growth.

We will not concern ourselves with the meteorological side of snow crystals to any great
degree, nor will we cover the problem of ice nucleation in detail. The solidification of ice from
liquid water is a related problem, with its own literature (e.g. see [29] and references therein).
Here again we will only call upon this literature inasmuch as it is directly relevant to growth
from the vapour phase.

A number of previous authors have reviewed the subject of snow crystal growth from
a variety of perspectives [7-10, 30, 31]. Nakaya’s classic text [9] is still a fascinating
introduction to the phenomenology of snow crystals, which includes many details on the crystal
morphologies of both natural and synthetic varieties. The review by Kobayashi and Kuroda is
also an excellent introduction to the physics of snow crystals, although it has become somewhat
dated. A nonmathematical version of snowflake science, complete with a large collection of
snowflake photographs, is given in [19].

2. Prism growth from vapour—theory

Ice Ih, the normal form of ice, has a hexagonal crystal structure, so the basic ice crystal growth
form is the hexagonal prism shown in figure 4. Cubic ice, ice Ic, has nearly the same binding
energy as Ice Ih, and there is evidence that the cubic form plays a role in the nucleation of snow
crystals, especially twinned and polycrystalline forms [10,32]. This role is relatively minor,
however, so we will mostly ignore cubic ice in this review. The other solid phases of ice all
appear at high pressures and/or low temperatures [33], so these too are beyond the scope of
this review.
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Figure 4. Left: Two views of the crystal structure of ice Ih, showing a lattice of ‘puckered’ hexagons.
Here balls represent oxygen atoms and bars represent hydrogen atoms. Middle: A schematic picture
of a simple ice prism, defining the principal crystal axes and facet planes. Right: A mosaic image
of some typical small ice prisms grown in the lab, showing different aspect ratios. The scale bar is
100 um long.

Snow crystals often grow as simple hexagonal prisms, like many of those seen in figures 3
and 4, especially when the crystals are 10-100 um in size. The overall morphology can be
either plate-like or columnar, depending on the relative growth rates of the basal and prism
facets. Figure 3 demonstrates that even simple hexagonal prism crystals clearly exhibit the
temperature dependence seen in the morphology diagram. Therefore, the first step towards
understanding snow crystal formation will be to understand the growth dynamics of simple
ice prisms.

2.1. Basic terminology

For an ice crystal growing from water vapour, we can write the growth velocity normal to the
surface in terms of the Hertz—Knudsen formula [34]

Cqat kT
Un = O0—/ =~ Osurf
Csolid 2rm

= QVkinOsurf » (1)

where the latter defines the velocity vyi,. In this expression k7T is Boltzmann’s constant times
temperature, m is the mass of a water molecule, cgoig = pice/m is the number density for ice,
Osurf = (Csurf — Csat) /Csat 1S the supersaturation just above the growing surface, cgy,s is the water
vapour number density at the surface, and cg(7) is the equilibrium number density above a
flat ice surface. The parameter o is known as the condensation coefficient, and it embodies
the surface physics that governs how water molecules are incorporated into the ice lattice,
collectively known as the attachment kinetics. The attachment kinetics can be nontrivial, so
in general o will depend on T, oyys, the surface structure and geometry, surface chemistry,
etc. If molecules striking the surface are instantly incorporated into it, then o = 1; otherwise
we must have @ < 1. The appearance of crystal facets indicates that the growth is limited
by attachment kinetics, so we must have o < 1 on faceted surfaces. For a molecularly rough
surface, or for a liquid surface, we expect « =~ 1 [35].

One should note that the parameterization in terms of « assumes that the attachment
kinetics can be described as an intrinsically local process, which may not always be a valid
assumption. For the ideal case of an infinite, defect-free surface this parameterization must
be valid, since in this limit it is little more than a mathematical definition. Nonlocal effects,
however, such as transport between facets, could make the parameterization invalid in some
circumstances. For example, surface diffusion is lumped into o, which effectively implies that
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the diffusion distance of adsorbed molecules on the ice surface (before they are incorporated
into the lattice) is much smaller than a characteristic crystal size. On a thin, plate-like snow
crystal, however, it is not impossible that surface diffusion carries adsorbed water molecules
from the basal facets to the prism facets, thereby enhancing growth of the prism facets, to the
point that equation (1) would yield oprsm > 1. If this happens, then the parameterization in
terms of « is invalid and surface diffusion must be specifically included in the overall problem if
one is to understand the growth dynamics. The Schwoebel-Ehrlich effect provides a potential
barrier that inhibits surface diffusion around corners [34,36], and there is experimental evidence
that supports o < 1 for snow crystal growth (see below). Therefore the assumption of purely
local attachment kinetics, parameterized by the condensation coefficient, will pervade our
subsequent discussion.

We note at this point that the equilibrium crystal shape—that which minimizes the total
surface energy—plays only a minor role when considering the growth of snow crystals. To
see why this is, consider the evolution of an isolated crystal spheroid and assume o =~ 1. The
equilibrium vapour pressure at each point on the surface will depend on surface curvature owing
to the Gibbs—Thomson effect [34], so ¢c(R) = csu (1 + 26/ R), where § = y /csoligkT ~ 1 nm,
y is the ice surface energy, and R is the local radius of curvature of the surface. The timescale
for a spheroid to revert to a sphere is then roughly Tequi ~ R?/vkind ~ 200 - [R/(10 pum)]?
seconds near the melting point. We see that this time is quite long for all but the smallest crystals.
Under most snow crystal growth conditions the timescale for reaching the equilibrium shape
is much longer than the timescale for growth. Thus the surface energy term usually plays a
negligible role in determining the aspect ratios of simple prisms.

To my knowledge the equilibrium shapes of isolated ice crystals have never been
definitively observed. As a result, Ay = Yhasal — Vprism has not been measured, although
one expects on theoretical grounds that Ay /y < 0.01 [10]. Thus the equilibrium shape would
be nearly spherical with only slight faceting [37]. Faceted areas generally become larger
during growth and smaller during sublimation. Thus even small crystals growing sufficiently
fast become essentially completely faceted, like those shown in figure 4 [37,38].

Note that ice crystal growth from the vapour is almost always in a regime where
Osurf << Csat- This is in contrast to thin-film deposition, where often cg, is so small as to
be negligible. Thus vy, can be thought of as a ‘refresh rate’ for the surface—the rate at which
the surface is simultaneously evaporating and regrowing. The velocity v, represents the net
growth that occurs. Since v, <K vkin, an ice facet cannot be thought of as a static crystal
plane, like something that might be slowly imaged by a scanning probe microscope. Rather
the surface is a very dynamical place, where molecules in the solid phase are being very rapidly
exchanged with those from the surrounding vapour.

2.2. Diffusion-limited growth

Snow crystal growth dynamics is typically dominated by attachment kinetics in combination
with two transport effects: particle diffusion, which carries water molecules to the growing
crystal, and heat diffusion, which removes latent heat generated by solidification. The
interplay of these three processes is ultimately responsible for the vast diversity of snow crystal
morphologies, so the task at hand is to understand how they each affect crystal growth. The
transport effects—particle and heat diffusion—are well understood at a fundamental level, so
in principle we can compute how they limit crystal growth. In practice, of course, this may be
difficult owing to the complex geometry of the solidification front.

Attachment kinetics, by contrast, is very much not yet understood in detail, and numerous
experiments on ice crystal growth have been aimed at exploring the molecular dynamics that
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occurs at a growing ice surface. For these experiments itis necessary to disentangle the different
mechanisms limiting crystal growth, to model particle and heat diffusion at a sufficient level
that the attachment kinetics can be extracted with confidence. Thus before going further we
must understand particle and heat diffusion as they apply to ice crystal growth.

Particle transport is described by the diffusion equation
de _ DV?e, )

ot

where c(x) is the water molecule number density surrounding the crystal and D is the diffusion
constant. The timescale for diffusion to adjust the vapour concentration in the vicinity of a
crystal is Taisrusion & R?/D, where R is a characteristic crystal size. This is to be compared with
the growth time, Tgowm ~ 2R /vy, where v, is the growth velocity of the solidification front
normal to the surface. The ratio of these two timescales is the Peclet number, p = Rv,/2D.
For typical growth rates of snow crystals we find p < 107>, which means that diffusion
adjusts the particle density around the crystal much faster than the crystal shape changes. In
this case the diffusion equation reduces to Laplace’s equation, V2¢ = 0, which must be solved
with the appropriate boundary conditions. Using this slow-growth limit simplifies the problem
considerably in comparison to much of the literature on diffusion-limited solidification.

The continuity equation at the interface gives

Csa D

(- Vst = (i - VO )urt )

Csolid Csolid

Uyp =

where o (x) = [c(x) — csat]/Csar and we are assuming the isothermal case to begin, SO cgy 1S
independent of spatial position.

Before attempting to solve the diffusion equation for complex crystal geometries, it is
instructive to first consider the growth of a fictitious ‘faceted’ spherical crystal, where the
equations reduce to one dimension and can be solved analytically. In this approximation we
treat the growing spherical surface as if it had the same attachment kinetics as a flat faceted
surface, with some arbitrary « that is constant around the sphere. This one-dimensional
treatment contains much of the physics found with simple prism geometries, but of course it
is much easier to solve and to visualize. We consider this problem in three limiting cases of
increasing difficulty.

2.2.1. Case I—finite kinetics (¢ < 1) without heating. In the absence of heating we can
assume a constant temperature, independent of position, and a straightforward solution of the
diffusion equation yields the growth velocity [39]
Qogiff
Un = — UinOco
o + oiff
(o4 Csat Dooo

== 4)

a + ogiff  Csolid R

Csat D D [2mm
Qdift = = — , (5)
CsolidVkinR ~ RY kT

vkin Was defined in equation (1), o is the supersaturation far from the growing crystal, and
R is the sphere radius.

In the limit orgir << o the growth velocity becomes vy, = cgu Do/ Csolid R, Which describes
purely diffusion-limited growth in which attachment kinetics can be neglected. In the opposite

where
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limit we have v, = @vyin0x, Which is valid for purely kinetics-limited growth unhindered by

particle transport. For the specific case of ice growing at T = —15°C in air we have
1 um D
Oldiff(—15°C) ~ 0.15 <—> ( ) s (6)
R Dair

where D, &~ 2 x 1075 m?s~! is the diffusion constant for water vapour in air at a pressure
of 1 atm.

By writing the growth velocity in this form it becomes apparent that one cannot easily use
measurements of the growth velocity v, to determine « if agir < «. In this case the growth
is mostly diffusion limited, and an examination of equation (4) reveals that small errors in the
determination of v, can result in large errors in the derived «. To measure « using crystal
growth measurements we must either use very small crystals or reduce the background gas
pressure (since typically D ~ P~!, where P is the background pressure).

2.2.2. Case lI—diffusion-limited growth (ogie << o) with heating. In this case we must solve

the double diffusion problem, considering both particle diffusion to the growing crystal and

thermal diffusion to remove latent heat generated at the interface. The spherical case can again

be solved exactly in the slow-growth limit [39], yielding
D ¢y 0y

Uy = ; @)
" R coia 1+ X0
where we use the convention that ¢y, = cg (7). In this expression we have defined
Yo = NDApice Csar (8)

K Csolid '
where A = 2.8 x 10° J kg~! is the latent heat for the vapour/solid transition, p;cc = 917 kgm™3
is the solid density, « is the thermal conductivity of the solvent gas (x ~ 0.025 W m™' K~! for
air), and n = dlog(csar)/dT. Typical values for these parameters are

T (OC) Csat/csolid Vgin (um S_l) n X0

—40 0.13x 107 17 0.11  0.03
-30 037 x 107 49 0.10  0.08
-20 0.96 x 107° 131 0.092 0.18
—15 1.51 x 107% 208 0.088 0.27
-10 233 x107° 324 0.085 0.41
-5 3.54 x 107° 496 0.082 0.59
-2 451 x 107° 635 0.080 0.74
-1 488 x 107° 689 0.079 0.79

where xo was evaluated in air at a pressure of 1 atm. We see that the main effect of heating
on diffusion-limited growth is to scale the growth by a factor of (1 + xo)~'. In near-vacuum
conditions the diffusion constant is large, so that o, >> 1 and the growth velocity becomes
limited mainly by heating. In this limit we have

m

~ (110 ums~) (%) O, ©9)

where the latter is evaluated at T = —15°C.
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2.2.3. Case IlI—finite kinetics, with heating. For the most general case, with finite kinetics
in addition to heating, the analysis is similar to the above and the final result is [39]
(24 Csat Do

vy A . (10)
a(l + xo) + agiff  Csolid R

This can be rewritten as

a* e Dol

Up N " ,
a* +agiff Coolid R

(11

where o* = a(1 + xo) and 6%, = 0/(1 + x0), and we note the similarity to the solution in
Case 1. Again the main effect of heating is to scale the growth by the factor (1 + o).
If the diffusion constant is large, this becomes

ao,
Uy N Lndvkino'om (12)
O + Ocond
where
K
Oeond = —————
" N RAp U
1 um
~05(—), 13
(*47) 13)
where the latter expression is again evaluated at 7 = —15°C. We note here that « is roughly

independent of background pressure down to fairly low pressures.

2.2.4. Substrate simulation. 'We can also use the spherical solution to examine growth on
a substrate if we assume a hemispherical crystal with the flat surface held at the substrate
temperature Tyypsrae [39]. This gives

D
v A (15 Csat O ’ (14)
a(l+ xy) +aaifr Csotia R
where
2nDAp ¢
X(/) — n L sat (15)
GKice Csolid
and G ~ 1 is a geometrical factor. In the case of fast diffusion this becomes
aa!
v=—20d 00 (16)
a+ %cond
with
Gk
’ 1ce
U = — - 17
cond an)\pUkin ( )
At T = —15°C this becomes
1 um
o, ~25G (%) | (18)

Since kice/kar ~ 100, the presence of a substrate reduces the temperature increase of the
growing crystal by a factor of ~100 when compared to free growth in air.
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2.2.5. Relation to experiments. The analytic results obtained above for a growing sphere are
useful for gauging the relative importance of diffusion and attachment kinetics, and are
especially useful when designing or interpreting experiments aimed at measuring « from
the growth of simple prisms. For example, if one wants to measure « for crystals growing
in a background gas, then it is necessary to achieve a condition where o < agis. Diffusion
modelling will not help much if this inequality is not met, because small systematic errors in
the measured v, will invariably amplify into large errors in the inferred «. Similarly, crystal
growth on a substrate must be done under conditions where o < o ,, since otherwise thermal
diffusion will distort the results. As we will see below, these are not trivial considerations and
many ice growth experiments have produced unreliable data because of systematic effects of
this nature. Modern ice growth experiments are just beginning to address and eliminate these
systematic errors, and are thus just beginning to produce data of sufficient accuracy to shed
light on the microphysics that underlies the snow crystal morphology diagram.

2.3. Diffusion modelling of prism growth

For real ice crystals, which are almost certainly nonspherical, one must employ more
sophisticated techniques to model diffusion-limited growth. For the case of simple hexagonal
prisms, for which v, is constant across a facet, a numerical solution of the diffusion equation
is quite tractable using commercial codes. While it is possible to solve the three-dimensional
Laplace equation around a hexagonal prism [40], there is much to be gained by looking first
at a two-dimensional cylindrical approximation, which is much simpler to solve and easier to
visualize. In this approximation the hexagonal prism is replaced by a solid cylinder, where the
six prism facets are approximated as one fictitious curved ‘facet’ that is capped by two circular
basal facets. This approximation is more than adequate for comparing with experiments
measuring the growth of snow crystal prisms, in part because the growth data to date have not
been very precise.

For many cases of simple prism growth, the double problem of heat and particle diffusion
reduces to primarily a particle diffusion problem only, as seen in the discussion of equation (11).
The thermal conductivity of ice is high enough, and the heating rate from solidification is low
enough, that heating tends to raise the crystal temperature uniformly. This affects the growth
by effectively changing cg,, which can be modelled as simply a change in o, even when the
crystal geometry is nontrivial. A reasonable estimate of the crystal temperature rise can often
be obtained from a spherical analysis, with the total rate of mass increase as input. This rough
estimation of heating may not be sufficient for all circumstances, especially crystal growth
at low background pressures [41]. But in many practical circumstances the double diffusion
problem reduces in essence to particle diffusion only.

For the particle diffusion problem one must solve Laplace’s equation in the space
surrounding the crystal, and there are several ways to specify the boundary conditions at
the crystal surface. The first choice is to specify the surface supersaturation og,s over the
entire crystal. If « & 1 and v, < v, then equation (1) suggests that o, =~ 0 is a reasonable
approximation for the surface condition. For most ice prisms, however, @ < 1 on the facets
and og,s ~ 0 is not a good approximation. In such cases one does not know oy, on the
surface, so a different choice of boundary conditions is necessary.

The second possibility is to specify @ ~ o~!V,0 over the entire crystal surface. This is
often impractical for crystal prisms because o varies considerably over a facet surface, as we
shall see. The third choice for boundary conditions is to specity the growth velocity v, ~ V,o
atthe surface. This choice is especially useful for comparing with experiments on prism growth,
since v, is ameasured quantity. Furthermore, as long as the crystal growth morphology remains
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that of a simple hexagonal prism, then we must have that v, = constant over an entire facet.
Thus specifying v, is often the most practical choice of boundary conditions at the ice surface.
The boundary condition far from the crystal is nearly always to specify 0.

Commercial diffusion codes are typically adapted for heat diffusion, but they can be used
for solving the particle diffusion problem as well. In this application one uses the temperature
field T (x) as a surrogate for the supersaturation o (x), and one can easily work out the proper
conversion factors for the specific code. In a heat diffusion code the above choices for boundary
conditions are called normal boundary conditions, convective boundary conditions and heat
flux boundary conditions, respectively, and again working out the proper conversion factors is
a straightforward exercise.

We examine the full problem of modelling diffusion-limited growth in more detail below,
including pattern formation, but make a few passing comments here. First, Green’s function
methods can be used to convert a two-dimensional cylindrical problem to one-dimensional,
which then allows simpler numerical solution [42,43]. These techniques can be useful for
generating code tailored to a specific modelling problem, for which commercial codes may
not be practical. Second, it is possible in principle to model the growth of an ice crystal as a
function of time by front-tracking methods: computing v, around the crystal, advancing the
interface for a small time-step, recalculating vy, etc [44]. This turns out to be an exceedingly
tricky task in practice, even for simple faceted crystals, because the attachment kinetics are
such a strong function of surface orientation relative to the crystal axes. The movement of
small steps on the surface is especially problematic in this regard, and to date the results have
not been very satisfying. Third, these simple diffusion calculations do not include ventilation
effects, which describe the enhanced growth of snow crystals in the presence of a moving
airstream [23]. Such effects are typically negligible for small prisms with sizes less than
100 pem, but may be important when the structures are larger.

2.4. Facet growth with diffusion

Having examined the basic tools for two-dimensional diffusion modelling, it is instructive to
consider some simple cases of prism growth, especially with different aspect ratios. Figure 5
shows some characteristic calculations obtained using a commercial diffusion code [45] for
growing ice prisms. Here we used velocity boundary conditions because the prism morphology
does not change appreciably during growth and v, is constant over a facet, as mentioned above.
One immediately sees in figure 5 that oy, varies considerably over the ice surface, and that
there are three distinct cases of prism growth.

The first case is for roughly isometric crystals, where the growth rates of the basal and
prism facets are comparable. The solution of the diffusion equation immediately implies that
osurf 1S @ maximum at the edges of the facets, as seen in figure 5. Since v, is constant over
a facet, equation (1) requires that aog,s must be constant as well, meaning « is largest at the
centres of the facets. This in turn implies the facets cannot be completely flat at the molecular
level, and are instead concave to some degree. The concave structure of each facet is such
that the step density, and thus «, is highest at the facet centre. Steps are then likely generated
from two-dimensional nucleation at the facet edges, and the steps propagate inward as the
crystal grows. For larger crystals, diffusion brings about larger variations in oy, across a
facet. Eventually this leads to the branching instability described below.

The second case is that of thin plate crystals, which is the second example shown in figure 5.
Here the growth is such that oy, is largest at the centres of the basal facets, so « is smallest
there. Thus the basal facets are convex at the molecular scale, and basal steps are generated
at the facet centres and propagate outward. Note this result follows simply from a solution of
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Figure 5. Left two panels: diffusion calculations around two growing ice prisms, to demonstrate
concave and convex growth. The first (leftmost) panel shows the cross-section of a growing thick
plate with diameter/thickness ratio D/T = 2. The calculation assumed axial symmetry, so the
top and bottom surfaces are the basal facets, and the left edge represents the prism facet. Velocity
boundary conditions were used, with vpism/Vbasat = 2. The contours show lines of constant
supersaturation in the air around the crystal. Here we see oy, is highest at the corners of the
crystal, indicating that the faces are all concave and that « is highest at the centres of both facets. In
this case, growth steps originate at the edges of the facets and propagate inward. The second panel
shows a similar calculation with D/T = 20 and vprism/Vbasal = 40. This time ogyf is highest at
the centres of the basal facets, indicating that these facets are convex. Thus growth steps originate
at the centre of a basal surface and propagate toward the edges. This behaviour must be present
for the growth of thin snow crystal plates in air at 7 = —15°C (rightmost panel above; scale bar
50 um) [27].

the diffusion equation in the space surrounding the crystal, with the facet growth velocities as
inputs. The dividing line between the convex and concave cases for plate-like prism crystals
occurs at diameter/thickness ratios of roughly D/ T = 10, depending on assumptions about the
crystal geometry. Both these cases are commonly seen in the growth of natural and synthetic
snow crystals.

The third case, not shown in figure 5, is that of thin columnar growth with D/T <« 1. In
this case the prism facets will become convex, which again follows directly from a solution
of the diffusion equation. It appears this case does not readily occur in natural snow crystals
because branching tends to happen before convex prism facets develop. However, the tips of
c-axis electric needle crystals (see below) probably do exhibit convex prism surfaces.

2.5. Attachment kinetics

The above treatments of particle and heat diffusion are typically sufficient for analysing the
growth of hexagonal ice prisms to an adequate precision, since the prism geometry is relatively
simple. What remains is to examine the condensation coefficient «« in detail. Much has been
written about the molecular dynamics behind attachment kinetics, and here we only briefly
mention the basics that likely apply to snow crystal growth.

The simplest case is that of a molecularly rough crystal surface, which has the highest
possible density of kink sites [34]. On such a surface the admolecules are indistinguishable
from surface molecules, which often means o & 1. There is little hard experimental evidence
to support the notion that @ &~ 1 on arough ice surface, but much effort has gone into measuring
o for liquid water surfaces. Many early experiments suggested o < 1 for water, but subsequent
work showed that evaporative cooling was highly significant in those experiments, making the
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early results unreliable. There is a rough consensus now that o =~ 1 for a liquid water surface,
although this is not universally accepted [46]. We will usually assume o & 1 for a molecularly
rough ice surface.

2.5.1. Nucleation-limited growth. The next simplest case to consider is that of a molecularly
flat facet surface, or terrace [34]. Steps and kinks are not present on a perfectly flat surface, and
in the absence of suitable attachment sites admolecules tend to evaporate off before becoming
incorporated into the surface. Growth then only occurs at an appreciable rate when the
admolecule density is sufficiently high that two-dimensional islands can nucleate on the surface.
Once an island forms, it grows because its edges provide steps and kinks for incorporating new
admolecules. The resulting growth rate v, depends on the nucleation rate as well as the island
growth rate. If the former is very low, then each island grows out completely before the next
forms, resulting in layer-by-layer growth. This regime appears to be of little relevance for
snow crystal growth.

For higher nucleation rates, there may be many growing islands on a surface at once, and
islands growing on top of other islands. This situation has been analyzed in numerous ‘birth-
and-spread’ models [35,47], giving results that depend in detail on numerous assumptions made
in the models. Birth-and-spread models typically yield growth rates that are parametrized [34]

Osurf

Ocri
a(T, ogu) = A(T, ogut) €XP <__t) , (19)

where o is called the critical supersaturation, given by
TB>Q,
Ocrit — ————»
T 3%kT)?

where g is the edge free energy for a growth island that is one molecular layer thick and €2, is
the area taken by a molecule on the surface. A is a complicated parameter that derives mainly
from the mean step velocity, which in turn depends on the mean surface diffusion distance, the
admolecule residence time, and other factors. In general, A depends weakly on supersaturation,
and for comparison with current experiments we can approximate A(7T, ogyr) ~ A(T). As we
will see below, experiments show that the formation of faceted ice prisms is often dominated
by nucleation-limited growth.

(20)

2.5.2. Growth mediated by dislocations and other step sources. Anything that provides a
source of molecular steps can influence the growth of a faceted surface. Examples include
impurities that reside on the surface, the intersection of a facet surface with a foreign object, or
crystal imperfections. Screw dislocations are an especially important source, since these can
provide a continuous train of steps that propagate across the surface [34]. When ot < Ocrits
island nucleation is rare and the resulting growth is typically dominated by the influence of
dislocations and other step sources. For the case of screw dislocations, the resulting growth
rates go as v, ~ o2 ., or equivalently & ~ ogys. This mechanism is often important in the

surf?
growth of ice prisms at low supersaturations.

2.6. Surface structure and crystal growth

Attachment kinetics ultimately derives from the molecular dynamics present at a crystal
surface, and the dynamics is intimately coupled to the molecular structure of the surface.
In the case of ice, numerous studies have found that the surface structure is both complex
and quite temperature dependent near the melting point. It is further generally accepted that
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changes in surface structure must somehow be responsible for the dramatic changes in snow
crystal growth with temperature. One thing that makes snow crystal physics so intriguing is
that we do not yet understand the ice surface structure very well, nor its impact on growth, and
thus we still cannot explain the snow crystal morphology diagram.

Crystalline surfaces frequently do not have the same molecular structure as in the bulk
crystal. Instead, various forms of surface reconstruction take place to lower the surface energy.
Near the bulk melting point an ice surface is a rather dynamic place, as evidenced by a high
vapour pressure (and large vyi,). Thus scanning probe microscopy cannot image the surface
structure directly and we must rely on more indirect surface probes to gather information. In
many ways, measurements of ice crystal growth rates are an excellent surface probe, because
o is so sensitive to surface structure. To use this probe, however, we must understand the
complete problem—how the ice surface changes with temperature and other parameters, and
how these changes are reflected in the attachment kinetics.

2.6.1. Surface roughening. For a crystal at finite temperature, there are two contributions
to the surface free energy, F' = E — T'S. The first is the binding energy, which favours a
smooth surface with the least number of dangling bonds, and the second is the surface entropy,
which favours a rougher surface with the greatest number of possible configurations. At low
temperatures the binding energy wins and the equilibrium structure is close to a flat, faceted
surface. Near the melting point, however, it becomes favourable for the surface to contain a
greater number of molecular edges and kinks [34]. Depending on the details of the molecular
structure of the crystal, there may exist a roughening temperature Tg, above which the surface
becomes completely rough.

Much has been written about the roughening transition, in part because of its mathematical
simplicity [34,48,49], and also because surface roughening is observed in many real crystals.
Without measuring the surface structure directly (which is difficult for a high vapour pressure
material like ice), there are two indirect observations that are likely indicators of surface
roughening: (1) above Tx the attachment kinetics are described by o ~ 1, and (2) the growth
form is nonfaceted even at low supersaturations. The evidence for surface roughening in ice
will be discussed in the experimental section below.

Sometimes a faceted surface will exhibit a relatively sharp transition fromo < 1toa = 1
as o isincreased, even if it is not above its equilibrium roughening temperature. This may be an
indication of kinetic roughening, in which surface roughening is induced by rapid growth [50].
Kinetic roughening is not a well-defined thermodynamic phase transition, and it occurs when
island formation on the surface is relatively easy. As with static surface roughening, kinetic
roughening precludes the formation of crystal facets. This phenomenon has not been studied
much in ice crystal growth, but it may be important for the formation of ice dendrites, which
occurs at high supersaturations.

2.6.2. Surface melting. 1In a sense, surface melting is a more developed form of surface
roughening. The molecules near the free surface of a solid are not as tightly bound as
molecules in the bulk, and for many materials a thin, quasi-liquid layer forms on the solid
surface at temperatures slightly below the bulk melting point 7;,. The width of the melted
layer diverges as the temperature approaches Ty, thus making it impossible to superheat the
solid phase above the bulk melting point. This phenomenon is called surface melting, and
there is ample evidence that ice exhibits surface melting at temperature above roughly —15°C
(for a summary of data pertaining to ice, see [33,51]; for a general review of surface melting,
see [52]).
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One can estimate the temperature-dependent thickness of the quasi-liquid layer in a
physically intuitive way using the Lindemann criterion, which states that a solid will melt
if the thermal fluctuations of the intermolecular distance become larger than approximately
10-15% of the average distance [53]. This century-old empirical melting criterion works
reasonably well for a wide range of bulk materials [54], and it has been directly verified both
experimentally [55] and in molecular dynamics simulations [56]. If we assume a simple model
in which a molecule is held in a harmonic potential, then intermolecular fluctuations have an
amplitude of approximately

kT 1/2
e <_) 7
K

where « is an effective spring constant. Near the solid surface the molecular binding is weaker
than in the bulk, so we write

k(d) = ko — f(d)Ax,

where d is the distance from the surface, A« is a constant, and f(d) is a function with f(0) = 1
and f(oco) = 0. The potential is weaker at the surface, so Ak > 0. However, the potential
comes mainly from nearest-neighbour interactions, so we expect Ax < k.

The Lindemann criterion states that the bulk will melt when x reaches some value
xo = (kTw/ Ko)'/2. Extending this, we expect the onset of surface melting will occur down to
a depth d at which

kT 172
o= (=f@m)

Expanding for small Ax/kg and for small t = (T}, — T)/ T, where Ty, is the bulk melting
temperature, this reduces to simply

. fld)Ax
==

It is customary in the case of ice to assume f(d) = exp(—d/}), where A is a scaling length for
the intermolecular interactions, and with this the thickness of the quasi-liquid layer becomes

Ak

which is valid for small .

It is instructive to compare this derivation with the more customary one based on surface
energies [52,57,58]. For the latter we assume the surface structure divides into a bulk solid
covered with a well-defined quasi-liquid layer of thickness d. We write the surface energy as

y(d) = ysL+yv + f(d)(ysv — ¥YsL — yLv)
=ysL+ v + f(d)Ay,

where f(d) is as above, s is the energy of a solid-liquid interface, y;y is the energy of a
liquid—vapour interface, and ysy is the energy of a fictitious ‘dry’ solid—vapour interface, for
which there is no surface melting. The quantity sy is in fact unmeasurable in the presence of
surface melting, since then one cannot make a stable solid—vapour interface. If surface melting
occurs, then ysy must be greater than ysp. + YLy, S0 Ay is positive.

The free energy per unit area of such a surface, as a function of layer thickness, is given by

F(d) = guptd +y(d),
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where ¢y, is the latent heat of solidification per unit mass, p is the water density, and again
t = (Tn, — T)/ Ty The first term in this expression reflects the free energy cost of melting the
quasi-liquid layer below Ty,.

Minimizing the free energy as a function of d yields

o Pt
Ay

and for f(d) = exp(—d/}\) we obtain

Ay
d(T) = Alog .
gmpPItA

Although the two derivations are quite different, and use different input parameters, both
give the same functional form for d(7). Both are mainly useful at a qualitative level, since
the input parameters Ak, Ay, A and f(d) cannot yet be calculated or directly measured at an
interesting level.

Many materials, although not all, exhibit surface melting to some degree near the melting
point. The first speculations on the subject were made by Faraday in connection with some
peculiar properties of ice, and many experiments have observed the effects of surface melting
in ice [33]. The measurements generally indicate that d(T) follows the logarithmic relation
described above. There is, however, great disparity between the different measurements,
probably because most experiments do not measure d(7") absolutely. Rather they measure
some quantity proportional to d(7'), with a poorly known proportionality constant (see [59,60]
and references therein for a review of recent measurements). Molecular dynamics simulations
are making progress toward understanding the surface structure of ice, including surface
melting [61-63], although reliable quantitative results are elusive. There also exists the
possibility of kinetic surface melting, in an analogous sense to kinetic roughening, but to
my knowledge this possibility has not been explored to any substantial degree.

Surface melting has a profound effect on the surface structure of ice, and attachment
kinetics undoubtedly depends on surface structure. Thus we expect that surface melting must
play an important role in the growth of snow crystals. Two additional facts support this:
(1) surface melting is known to depend strongly on temperature over just the range where
snow crystal growth shows a great deal of variation with temperature, and (2) different facets
of the same solid sometimes exhibit the effects of surface melting differently. Thus it may well
be that much of the temperature variation seen in the morphology diagram is a manifestation
of surface melting in ice.

Unfortunately, at present we do not know, even qualitatively, how surface melting in
general affects the attachment kinetics governing crystal growth [64]. The Lacmann—Stranski—
Kuroda model [57, 65] (for a summary, see [10] and references therein) is perhaps the most
ambitious attempt to model crystal growth in the presence of surface melting, aimed specifically
at understanding the snow crystal morphology diagram. The model is quite speculative,
however, and we will see below that its main results do not agree with measurements of
ice growth.

2.7. Chemically enhanced growth

The reader should come away from the above discussion with an indication that the surface
structure of pure ice, even in equilibrium, is quite complex near the melting point and remains
only poorly understood. This makes it especially difficult to understand the crystal growth
of ice, since crystal growth is a dynamical phenomenon that likely depends strongly on the
details of surface structure. As a result, our basic picture of ice crystal growth remains murky,
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and we do not yet have even a qualitative understanding of the underlying physics behind the
snow crystal morphology diagram.

The whole story becomes vastly richer, however, when we consider how surface chemistry
can affect the crystal growth process. There is much evidence that dilute chemical vapours in
air can dramatically change the growth of ice crystals from water vapour [22,30]. A wide range
of chemical impurities, such as vapours from many alcohols, acids, hydrocarbons, etc, even at
low concentrations, affect both ice crystal morphologies and growth rates. This is one example
of surfactant-mediated crystal growth, a topic that is being studied with increasing interest by
the semiconductor community [66,67]. In the case of ice, very little has been quantified on
this subject, and one can only speculate about how chemical catalysis affects the attachment
kinetics behind ice crystal growth. To a large degree, the influence of surface chemistry on
snow crystal growth remains a wide-open problem.

3. Prism growth from vapour—observations

Crystal growth theory is not sophisticated enough that one can calculate the formation of
most real crystals from first principles, since the surface dynamics involved in growth can
be quite complex. In general, there exists a large gap between crystal growth theory and
the phenomenology of growing real crystals. This is especially true with a material like ice,
for which even the equilibrium surface structure is not well known. Experiments, therefore,
are very much needed to establish a self-consistent phenomenological picture of the growth
process, which can then be used to guide further theoretical development.

In the case of ice, the simplest experiments are those involving the growth of hexagonal
prisms, for which structural considerations are the least complex. If we assume the growth
of an ice surface can be parameterized by the condensation coefficient «, then a clear
goal of experiments is to determine « (7, og,f) over as large a range of temperatures and
supersaturations as possible. A substantial number of experiments have measured the growth
of simple ice prisms with this goal in mind.

3.1. Experimental techniques

The first step in growing ice crystals is to produce a supersaturated environment, which can
be done via several methods. One popular technique is to grow crystals on a substrate at
some temperature 7; while providing water vapour from a nearby ice reservoir at a higher
temperature 7,. This method works especially well under near-vacuum conditions, and the
supersaturation can be easily adjusted by changing 7;. One can also produce an isothermal
supersaturated environment by providing a reservoir filled with a liquid salt solution, and then
the supersaturation is varied by changing the salt concentration [68].

Another popular approach for providing an isothermal supersaturated environment is via
a fog of supercooled liquid water droplets. Once such an artificial cloud has settled down, the
supersaturation will be roughly equal to the water saturation value, Oyater = (Cwater — Cice )/ Cice -
One could then vary o by using a fog of salty water droplets, but to my knowledge this
approach has never been used. Clouds are most useful when experiments are done in air or
other background gases at pressures near one atmosphere, although they have been used at
higher pressures as well [69].

Vertical diffusion chambers [8,21,30,70,71] are able to produce environments in which the
supersaturation is quite high, easily up to o ~ 1 or higher. The vertical temperature gradients
in these chambers are also useful when investigating growth at different temperatures. Here
again, diffusion chambers are mostly used in air or other background gases at pressures near
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one atmosphere, since the water vapour fluxes at significantly lower pressures would be quite
large.

Once a supersaturated environment has been made, it is then necessary to nucleate some
ice crystals. Ice will readily nucleate on most substrates, but only if the supersaturation is above
some critical value that depends on the substrate composition [72]. In some circumstances it
is useful to introduce a brief pulse of water vapour to nucleate crystals on a substrate. The
nucleated crystals then quickly consume the excess water vapour in the pulse, leaving small
crystals to grow at lower supersaturations [73].

Some additional popular methods to nucleate ice crystals are: (1) introducing a small
quantity of silver iodide smoke, since the smoke particles serve as good nucleation sites,
(2) rapidly expanding a small quantity of saturated gas to bring about homogeneous nucleation
[74], and (3) dropping a particle of dry ice into a growth chamber, which again induces
homogeneous nucleation in the cold wake of the particle. These techniques are often used to
produce free-falling crystals in an air-filled cold chamber.

Ice will grow epitaxially on the mineral covellite (CuS) [75], on silver iodide crystals
[71,72,75], and on mica [76], to name a few. In some instances the nucleation on silver iodide
is optically deactivated [77]. For all these minerals, ice crystals grow with a basal plane in
contact with the substrate, and interference effects can be employed to determine the crystal
thickness [78]. To my knowledge, the controlled epitaxial growth of ice crystals with other
crystal orientations has not been realized.

Some new experimental developments include the observation of levitated single ice
crystals, both in a moving air column [79] and via electrodynamic levitation [80]. The obvious
advantage of such techniques is that one can monitor the growth of a single, isolated crystal as
a function of time. Determining o accurately is still a difficult problem with these experiments,
however.

Negative crystals (vapour inclusions) can also be used in ice evaporation studies, which
are related to growth studies. But in experiments with negative crystals it is especially difficult
to accurately determine the subsaturation at the crystal surface, which hinders quantitative
experiments [81,82].

3.1.1. Systematic errors in ice crystal growth measurements. At least one thing has become
abundantly clear over several decades of ice crystal growth experiments—there are a great many
troublesome systematic effects that can influence ice crystal growth and thwart one’s attempts
to make quantitative measurements under well-controlled conditions. If the experimenter is
not exceedingly careful, a measurement may be dominated by systematic effects. Thus it is
worthwhile to examine these various problems in detail, so that one can avoid them in future
experiments. The list here is a summary; a more detailed account of systematic problems
present in published experiments can be found in [83].

Vapour diffusion. Unless an ice crystal growth experiment is done under pure water vapour
conditions—that is, in the complete absence of any background gas—one must worry about
vapour diffusion effects. Diffusion reduces ogyt relative to o, and thus limits crystal growth.
Equation (4) above shows that it is nearly impossible to make an accurate measurement of «
when agir < . Of course one can, and should, model the effects of diffusion to determine
osurf for growing crystals, but this can only be done with limited precision. If ag;s is small, then
even modest systematic errors in a crystal growth measurement will be amplified into large
systematic errors in the determination of «. The very best quantitative ice crystal growth exper-
iments done to date are only absolutely accurate to about a factor of two in the measured growth
velocity, with crystal-to-crystal variations that are again roughly a factor of two. This means one
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cannot make a meaningful measurement of « unless otgir = . This is an important point, since
nearly all the early ice growth experiments, particularly those done in air, did not adequately
disentangle diffusion effects from the growth data, and thus produced unreliable results [83].

Neighbouring crystals. Systematic errors from diffusion can be present even when agigr > «, if
the crystal under observation is surrounded by neighbouring crystals. A notable example is the
case where one is observing the slow growth of a faceted crystal when it is surrounded by fast-
growing, nonfaceted crystals. Nonfaceted ice surfaces can have ¢ & 1, meaning that o — 0
in their vicinity, which can greatly impede the growth of nearby faceted crystals. The best
way to see this is by considering the scalar field o (x) in the space around the growing crystals.
Diffusion requires V2o = 0, and the fast-growing nonfaceted crystals may be modelled by
boundary conditions with o & 0 at the growing surfaces. If the water vapour source is far away,
then the nonfaceted crystals may substantially reduce o near the crystal under observation.
This is not the case in a pure water vapour environment, but is a concern with surprisingly low
background gas pressures. The solution to this problem is to (1) make sure there are not too
many neighbour crystals, (2) make sure the neighbour crystals are far away from the crystal
under observation, and (3) keep the water vapour source close.

Crystal heating. The simple spherical analysis shows how crystal heating affects growth
measurements. If latent heat is carried away by conduction to the background gas, then
equation (12) shows that heating is important when o¢ong < . A substrate is more effective at
removing heat, and in this case equation (16) shows that heating is important when o/, 4 < c.
Heating is especially problematic for crystals not in contact with a substrate, and for growth at
low background gas pressures. Again this systematic error is reduced by making measurements

using smaller crystals.

Cloud dynamics. When ice crystals are growing in a cloud of water droplets, it is a mistake to
assume that the supersaturation is automatically equal to the equilibrium value for liquid water
at the cloud temperature. It takes time for a cloud to reach a state of near equilibrium, and how
close one approaches equilibrium depends on the cloud size and dynamics. Large droplets
may be warmer than ambient if they have not had time to equilibrate. Small droplets may be
too cool if evaporative cooling draws heat out faster than interaction with the surroundings can
replace it. In addition, when many crystals are growing in a cloud they all compete for water
vapour, again distorting the supersaturation field. These effects should be carefully modelled
in a given experiment to gain a more accurate estimate of o inside the cloud. Note that these
problems are much worse for small clouds and when the air pressure is reduced.

Crystal imperfections. There is ample evidence that crystal imperfections in faceted ice
surfaces can serve as a source of molecular steps that promote growth. Screw dislocations
are well known in this role, but other crystal faults may also be relevant. A ready source of
molecular steps will especially promote growth at low supersaturations, when two-dimensional
nucleationis rare. My experience (following [84]) has been that imperfect surfaces often cannot
be visually distinguished from more perfect faceted surfaces; some crystal specimens simply
exhibit anomalously fast growth. The best experimental strategy here is to measure a large
number of crystals.

Substrate interactions. Several papers have described how substrate interactions can affect
the growth of ice crystal facets [73, 85, 86]. It appears that the intersection of an ice facet
with a substrate can be a source of molecular steps, which again increases the growth rate
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when the growth is nucleation-limited [85]. These effects are probably not always important,
and different substrates may behave differently. One thing is clear, however—substrate
interactions can increase ice growth rates by at least factors of 2-5, so this systematic effect
must be considered. The best approach is to restrict one’s measurements to facets that are not
in contact with a substrate [39].

Chemical impurities. Impurities on an ice surface might impede growth by interfering with
surface diffusion, or they might enhance growth by providing nucleation sites. At any
rate, there is certainly ample qualitative evidence that impurities affect ice growth [22, 30].
This is an especially thorny experimental problem, since there is little quantitative data on
how clean a given experiment must be before it can be considered free of chemical effects.
However, crystals grown in normal laboratory air repeatably exhibit morphological changes
with temperature that follow the morphology diagram, so we can conclude that the impurities
in ordinary air do not disrupt the growth of new small crystals by a large factor. My personal
rule-of-thumb is that if you can smell something in the air, it will likely have some effect on
ice crystal growth.

Evaporation/growth cycling. There is some evidence [87] that evaporating and regrowing a
single crystal affects the measured growth rates, probably from the introduction of nucleation
sites as the crystal is processed. The best experimental strategy here is to avoid a lot of
evaporation/growing cycles when taking growth data, and to sample many crystals.

In summary, past experience shows that there are many pitfalls that must be avoided when
measuring ice crystal growth rates. These systematic effects should be examined carefully
when designing new experiments, and they should be examined again when interpreting the
results of published experiments.

3.2. Conclusions from growth measurements

Considerable effort has gone into making quantitative measurements of the growth of simple
ice prisms and/or facet surfaces in order to accurately determine « (7', o,s) and thus gain a
better understanding of the snow crystal morphology diagram. The measurements have proven
to be surprisingly difficult, however, and a critical examination of the literature reveals that
essentially all the results published to date suffered from systematic errors to some degree
(for a detailed summary of the experiments see [83]). As a result, the different experiments
are not in reasonable agreement with one another, and we must therefore be cautious in what
we conclude from the data. With that in mind, we have attempted here to summarize what
is known, or at least probably known, about the growth of simple ice prisms. Some of these
conclusions reflect the biases of the author and are clearly in need of additional experimental
and/or theoretical study.

The parameterization in terms of a condensation coefficient is a valid one. This is a weak
conclusion, since the existing growth data neither support it strongly nor suggest that it is
invalid. The measurements roughly indicate @ < 1 on faceted surfaces and ¢ ~ 1 on rough
surfaces, at least to the limited accuracy of the most reliable data [27,39]. Thus it is certainly
useful to assume o (7', ogy,f) is a valid parameterization for simple ice facets. However, there
is also evidence (see below) that & depends on the size and geometry of a given facet, and not
just on T and o, which complicates the picture substantially.

Substantial surface diffusion between facets seems unlikely. Here again this is a weak
conclusion, without a great deal of hard experimental evidence one way or the other. Mason
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and collaborators have suggested that surface diffusion between facets is important [88], and
this result has been widely cited. But it appears the data in support of this were substantially
distorted by diffusion effects [83]. On the theoretical side, there is a potential barrier that
inhibits the migration of admolecules between terraces (the Schwoebel-Ehrlich effect [34,36]),
and surface diffusion between facets would require numerous such jumps to traverse a rounded
corner. Without compelling experimental evidence demonstrating surface diffusion between
facets, it seems prudent at this stage to assume the phenomenon is unlikely. Ice is full of
surprises, however, and the data are certainly not such that we can rule this possibility out.

The condensation coefficient is independent of background air pressure. Here again, several
authors have presented data suggesting that background gas does affect a(T', ogy¢), but upon
close inspection these data were almost certainly influenced by diffusion effects, and in
my opinion they are not reliable [83]. The molecular interactions between air and ice are
sufficiently weak that it seems unlikely that the presence of air would have a significant
influence on the molecular dynamics of the ice surface. There is also evidence that snow
crystal morphologies are essentially the same in gases of air, nitrogen, helium, hydrogen and
carbon dioxide, even though these gases have much different solubilities in water, reflecting
different strengths of molecular interactions [89]. Here again, we cannot rule out that & changes
to some degree with background gas, and better data are needed. But in my opinion it appears
that « is essentially independent of background gas, at least for relatively inert gases like air.

Facet growth is primarily nucleation-limited over a substantial temperature range. This
conclusion is based largely on recent data [39], which are the most thorough and appear
to be the least affected by systematic errors (however, see [83]). Thus it strictly applies
only in the temperature range —40°C < T < —10°C, for the growth of facets that
do not include step sources from crystal faults or impurities. The data over this entire
temperature range are well represented by a condensation coefficient with the functional form
a(T, ogyr) = A(T)exp(—0cit/0suf), Which is consistent with nucleation-limited growth.
Preliminary new data [90] suggest that this functional form continues to represent the data
adequately at temperatures up to 7 = —5°C.

The formation of six-fold symmetric snow crystal prisms is a direct indication that the
growth rates of the six prism facets on a given crystal are all comparable. This immediately
suggests that the growth of prism facets under typical meteorological conditions is often not
driven by dislocations, since it is unlikely that the dislocation density would be the same on
all six facets of a symmetrical crystal. This supports our conclusion that growth is primarily
nucleation-limited.

In contrast, observations of Antarctic snow crystals reveal a large fraction of asymmetric
prisms [91], suggesting the growth of those crystals is likely driven by dislocations. Antarctic
crystals often grow at low temperatures under conditions where oy < Ocrit, SO again this fits
our overall picture.

The critical supersaturation is roughly the same for prism and basal facets, and is a monotonic
function of temperature over a substantial temperature range. It was speculated for many years
that large differences in o, between the basal and prism facets, together with changes in o
with temperature, would be responsible for much of what is seen in the morphology diagram.
Surprisingly, it now appears that o is roughly the same for both the basal and prism facets,
and furthermore changes only monotonically with temperature. This conclusion is again based
largely on the most recent data [39], which are shown in figure 6. Other data sets give conflicting
results, but the recent data suffer the least from systematic errors [83]. Additional confirmation
is certainly desirable, as is an extension of these data to higher temperatures.
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Figure 6. Results from measurements of the growth of simple ice prisms from the vapour
phase. The growth was parameterized in terms of a condensation coefficient with (T, ogyf) =
A exp(—0crit/Osurt). The plots show ot (T) and A(T) that were extracted from the data in [39].
Note that the critical supersaturation o is essentially identical for the prism and basal facets,
with a relatively simple, monotonic dependence on temperature. The constant term A, on the other
hand, is different for the two facets with a more complex temperature dependence.
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Figure 7. The edge free energy, 8 (per unit length) for a growth island that is one molecular layer
thick, as a function of temperature [39]. The scale at right is normalized by Sy = ay, where a is
the layer height and y is the surface energy (per unit area) for ice.

A measurement of the critical supersaturation then gives 8, the edge free energy for a
growth island, according to equation (20), and this is shown in figure 7. The diminishing
edge free energy with increasing temperature is probably indicative of surface restructuring;
at higher temperatures the lattice structure becomes less rigid, allowing the step edge to be
smoother with a lower edge free energy. This could be confirmed by molecular dynamics
simulations, which appears to be feasible with current technology.

A roughening transition occurs on prism facets near the melting point. This appears to occur
at a temperature of 7 &~ —2°C, and only on the prism facets; the basal facets do not show a
similar transition below the melting point [38]. Snow crystals sometimes grow as plate-like
forms with no prism facets at these warm temperatures, supporting this conclusion. Kinetic
roughening may also be important at these temperatures. Since surface melting is almost
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certainly present this close to the melting point, the roughening transition must be at the quasi-
liquid/solid interface. Observations of ice growth from liquid water also show basal faceting
without prism faceting [92-94], which likely indicates the same basic roughening transition.

Prism growth in air follows the morphology diagram. Measurements of the sizes of prism
crystals grown in air at a pressure near 1 atm clearly follow the morphology diagram [10,25].
The prism sizes follow a power-law behaviour as a function of growth time, as expected
when the growth is primarily diffusion limited [26,27]. The aspect ratios of such prisms
commonly range from D/T =~ 40 (diameter/thickness) for thin plates grown at 7 = —15°C
to D/T ~ 1/20 for columnar prisms grown near T = —5°C.

Ice prisms grow nearly isometrically in near-vacuum at all temperatures. In contrast to the
extreme aspect ratios seen in prisms grown in air, ice prisms grown in near-vacuum conditions
typically have 1/3 < D/T < 3, regardless of temperature. This is a robust result that has
been found in several experiments, provided there are no strong ice/substrate interactions.
As the background pressure is increased the aspect ratios become more extreme, and the
morphological structure becomes more complex [69]. The nature of the transition to more
extreme aspect ratios as pressure is increased is certainly deserving of additional study.

A new type of instability is needed to explain the growth of thin plates and columns. The growth
of nearly isometric crystals in near-vacuum is difficult to reconcile with the observation that
thin plates and needles often grow in air. Diffusion actually tends to discourage the growth
of ice prisms with high aspect ratios, because in such cases the supersaturation is lowest on
the fast-growing surfaces [27]. For the growth of thin plates at T = —15°C, for example,
we see from figure 5 that o/ism /@basal > Vprism/Ubasal, and under some circumstances we must
have aprism /0tbasal = 100 to produce the types of plates shown in figure 5 [27]. This conclusion
follows rather simply from our discussion of the diffusion equation above. Under near-vacuum
conditions, however, the growth is more nearly isometric, indicating that cpism /tpasa << 100
in that case.

To resolve this puzzle, Libbrecht has suggested that a new type of growth instability is
necessary to reconcile these various observational facts [27]. He suggested that @ may change
not only with temperature and supersaturation, but also with the size of the crystal facet, such
that @ — 1 when the facet size becomes small, calling this structure-dependent attachment
kinetics. This is a speculative model, without a strong theoretical foundation, so additional
work is needed to understand this aspect of the growth dynamics. However, it does appear that
a simple « (o, T') function cannot explain the growth of ice crystals in air and in near-vacuum,
and some form of new instability is necessary to reconcile these data [27]. The true physical
nature of this instability remains a mystery.

3.3. Summary of snow crystal prism growth

One might have thought that understanding the growth of simple snow crystal prisms, the most
basic ice crystal form, would be a relatively simple task. Upon closer inspection, however, the
problem is surprisingly rich, and many aspects remain quite puzzling. Although considerable
effort has been expended in attempts to reveal the physical origins of the morphology diagram,
at present we do not have even a satisfactory qualitative picture of the mechanisms that produce
such dramatic changes in morphology with temperature.

Our understanding of ice prism growth continues to fall short in both theory and
experiment. On the theoretical side, we do not yet have a microscopic model that describes
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crystal growth from the vapour in the presence of surface melting. There is a general expectation
that surface melting is an important piece of the ice prism puzzle, but a quantitative growth
model remains elusive. The Lacmann—Stranski—-Kuroda model [57, 65] (for a summary,
see [10] and references therein) predicts large nonmonotonic changes in o, with temperature
and large differences in o between the prism and basal facets, and both predictions are
contradicted by experiment.

In addition to this lack of a basic underlying growth model, there is now evidence that
additional growth instabilities, such as the proposed structure-dependent attachment kinetics,
are necessary to explain some aspects of prism growth, as described above. These new
instabilities are likely quite important in understanding the morphology diagram, but they
also complicate the theoretical picture even further.

On the experimental side, many measurements of « (7', og,) have been seriously affected
by systematic errors [83], so we still do not have a good picture of « (T, og,t) over a broad
range of temperatures and supersaturations. As a result, we have not yet mapped out the ice
attachment kinetics in detail, and thus we are missing this vital input to the growth problem.
This situation is changing, however, as new experiments reduce the systematic effects and
produce more reliable measurements. We are confident that substantial experimental progress
will be made in this area, and that this will lead to new theoretical insights into the basic
microscopic processes governing snow crystal growth.

4. Dendritic growth

The simple hexagonal ice prisms discussed above appear when the crystal growth is not so
strongly limited by particle diffusion—that is, when the supersaturation is low, the crystal size
is small, and/or the background gas pressure is low. As long as at least one of these parameters
is small enough, the growth is dominated by attachment kinetics, resulting in faceted crystals.
When some combination of these parameters is increased sufficiently, then particle diffusion
begins to dominate the crystal growth dynamics and at some point branching occurs. When the
crystal morphology exhibits numerous branches and side-branches, then we say the growth is
dendritic, which literally means ‘tree-like’. Dendritic crystal growth is but one example of the
more general phenomenon of pattern formation in nonequilibrium growing systems [95,96].

Some examples of ice crystal dendrites grown in air are shown in figure 8. While ice
dendrites can grow at any temperature, they are most prominent near 7 = —5°C, where
thin ice needles form, and especially near 7 = —15°C, where the six-fold crystal symmetry
produces side-branches that extend at 60° angles from their main branches. In both these cases,
the growth of a single ice dendrite is largely two-dimensional, such that most of the large-scale
structure is confined to a flat plane. The overall complexity of the dendritic pattern increases
with increasing supersaturation, as indicated in the morphology diagram (figure 2), as well as
with increasing crystal size and with increasing background gas density [69]. As is typical for
dendrites, the growth often exhibits some self-similar, fractal characteristics. For ice dendrites
the smallest structures typically occur on scales of about 1-10 pem.

4.1. The transition from faceting to branching

Whenever solidification is limited by diffusion, then the growth of a flat interface is unstable.
This is true whether the growth is limited by particle diffusion that brings material to the
interface or by heat diffusion that removes latent heat generated at the interface. To see the
origin of this instability, consider the case where particle diffusion is the dominant factor and
ignore attachment kinetics. If we start with a flat, growing surface and add a small bump, the
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Figure 8. (a) Anice dendrite growing at 7 = —5°C, showing the characteristic ‘fishbone’ structure.
The tip growth is not along a well-defined crystal axis, but varies depending on supersaturation.
Most of the structure seen here is confined to a flat plane. (b) A ‘fern-like’ ice dendrite growing at
T = —15°C. Here the tip growth is along the a-axis of the crystal, so each side-branch makes a 60°
angle from its main branch. Growth of the basal facet is slow at —15°C, so again this is a planar
structure. In both panels the scale bars are 100 um long and the insets are 4 x magnified views of
the growing tips. While growing, the dendrite tip velocity vy and the tip radius of curvature Ry,
are approximately constant. These crystals were grown in air at a pressure of 1atm at 0o, = 1,
where typical tip velocities are a few micrometres per second and typical tip radii are of order 1 um
(from [97]).

bump will effectively stick out farther into the supersaturated medium above the surface. Thus
particle diffusion will bring material to the top of the bump at a slightly faster rate than to
the surrounding flat surface. With a greater supply of material, the bump grows larger, which
increases its supply even more. This positive feedback effect is often called the Mullins—
Sekerka instability [34, 98, 99], and it is a ubiquitous feature of diffusion-limited growth.
Much of the structure in snow crystals ultimately derives from this instability.

If we add attachment kinetics at the interface, the picture becomes more complex. We
then find that a simple faceted morphology can grow stably, but only for so long. Consider
the case shown in figure 9, where a faceted plate-like crystal sprouts branches as it grows
larger. If we focus on the growth of the prism facets, then the growth of a flat facet requires
that v(x) & constant, where this is the perpendicular growth velocity as a function of position
along the facet. From kinetics we have v = o vy, 0y, and a solution of the diffusion equation
reveals that oy,s(x) varies across the facets, being lowest at the facet centres. Thus as long
as the crystal retains its simple prism structure as it grows, o must also vary across the facets,
being highest at the facet centres. Since the surface diffusion lengths are small compared to
the crystal size, this simple analysis reveals that the prism facets cannot be perfectly flat, but
are slightly concave. The curvature adjusts itself so that the step density is higher at the facet
centres, which provides the necessary variation in «(x) across the facet. The curvature is so
slight, however, that the facets remain flat in appearance.

As long as this growth feedback mechanism can continue, the crystal growth remains
faceted in appearance, with the facet curvature increasing steadily as the crystal grows larger.
With time the step density reaches its maximum value at the facet centres, at which point the
surface is essentially rough on a molecular scale. Then « ~ 1, its maximum value, while o¢
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Figure 9. A series of photographs of a growing snow crystal, showing the transition from faceted
to branched growth. The initially flat prism facets become hollowed as particle diffusion limits
the growth at the facet centres. This plate-like crystal was grown on the end of an electric needle
(see below), in air at a pressure of 1 atm. The final crystal size is approximately 1 mm. Note that
a small water droplet fell on the lower left tip of the crystal as it grew, nucleating the growth of a
secondary structure. (Photo by the author.)

continues to decline at the facet centres as the crystal continues to grow. Once this condition is
reached, we can no longer have v(x) ~ constant across the facet, and the crystal then sprouts
branches as shown in figure 9.

Near T = —15°C the Mullins—Sekerka instability leads to the familiar six-fold-symmetric

branching seen in plate-like stellar crystals. Near 7 = —5°C the same instability first produces
hollow columns and then clusters of needle crystals. Note that convex facets do not undergo
this branching instability. Thus the growth at 7 = —15°C remains plate-like even at high

supersaturations and for large crystal sizes.

The transition from the growth of simple prism crystals to more complex dendritic
structures is fairly well understood at a qualitative level, and some attempts have been made to
model this transition in detail [43]. To my knowledge, however, little quantitative experimental
work has been done to examine this transition. The picture is particularly complicated in ice,
since faceting continues to play a strong role even in the presence of well-developed branching.
For example, the fully developed dendritic growth at 7 = —15°C (see figure 8())) still retains
strong faceting on the basal surfaces, yielding a nearly two-dimensional dendritic structure.
Faceting is also frequently seen at the tips of branches, as in figure 9.

4.2. Dendrite theory and snow crystal growth

In spite of the overall complexity of dendritic growth, the tip of a dendrite often grows with a
tip velocity vy, and a tip radius of curvature Ry, that do not change appreciably with time (see
figure 8). This statement is true for many different types of diffusion-limited solidification,
for structures growing from the vapour or the melt phase, regardless of whether the growth is
limited by particle diffusion or heat diffusion [98]. Many of the essential features of dendrite
growth theory have been worked out in considerable detail [100, 101], and this theory can
be fairly easily adapted to ice crystal growth from the vapour phase [97]. The theory is not
complete in that it does not include faceting and other complications, so at present it cannot
quantitatively describe many of the features seen in ice dendrites. Nevertheless, it is a good
starting point that explains many aspects of ice dendrite growth to a reasonable approximation.

Dendrite theory in the case of snow crystal growth begins with the particle diffusion
equation in the limit of small Peclet number, as was described above. In this limit the
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time-dependent diffusion equation is replaced by Laplace’s equation V2¢ = 0, which must then
be solved for the water vapour concentration c(x) with the appropriate boundary conditions.
One can show that particle diffusion typically restricts growth more than heat diffusion for
the case of snow crystal dendrites grown in air [97], so heat diffusion will be ignored in the
following treatment.

The contribution of surface energy to the surface boundary condition can be found by
considering a spherical crystal, which has the surface energy Usyace = 47 Ry, where R is
the radius of curvature and y is the surface tension, equal to 0.109Jm~2 for ice. Pulling
a molecule off the surface reduces the sphere’s surface area and thus releases an energy
dUgyrtace = 2y /Csolia R. Therefore, the equilibrium vapour pressure above a spherical crystal
is approximately

28
Ceq ™ Csat 1+ E , 21

where 6 = y/csoligkT &~ 1 nm and c, is the saturated vapour pressure above a flat interface.
Attachment kinetics also affects the surface boundary condition because a growing surface
is not in equilibrium. From the definition of & we have

(Csurt — Ceq)
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This expression is strictly valid only for spherical growth in the case of isotropic surface
tension and attachment kinetics, but we will proceed using this expression nevertheless, with
the understanding that the more general case would be similar in form.

We note at this point that our goal in this section is to describe the essential physics of ice
dendrite growth from the vapour, and not to find a mathematically precise solution to the full
problem. Thus we will make numerous rather crude approximations when dealing with the
dendrite geometry and the surface boundary conditions. This approach is instructive and quite
productive, and it is also an unfortunate necessity because a full dendrite growth theory has
not yet been derived. In particular, the combination of faceting and branching has proven to be
a formidable problem. A much more mathematical treatment of the two-dimensional problem
with attachment kinetics is described in [101], which reveals some of the full complexity
inherent in dendrite growth.

We have found that a simple theoretical treatment of the problem works surprisingly
well at a semi-quantitative level, apparently because both the phenomenon and the theory are
quite robust and insensitive to perturbations. For example, the phenomenon is robust in that
dendrite growth with time-independent vy, and Ry, is a fairly ubiquitous occurrence over a
broad range of physical circumstances. Small changes in attachment kinetics, geometry, etc,
do not seem to alter the underlying physics that describes the growth. The basic results from
dendrite theory also appear to be quite robust, and the theory even shows many similar features
in both two-dimensional and three-dimensional formulations [102]. This latter property is
probably why we can use the simple theory to such good effect when describing the growth of
these flat—and thus strongly faceted—ice structures.

To solve the diffusion equation around a growing ice dendrite, we assume that the crystal
growth proceeds with a typical three-dimensional dendritic morphology, described by an
approximately cylindrically symmetric parabolic dendrite tip moving with constant v, and
Rip. Typically we do observe that ice crystal dendrites have rather rounded tip structures, as
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seen in figure 8, suggesting that faceting is not well developed near the tip, where the theory
is being applied. It is well known that such a parabolic form, with constant v, and Ryp,
is a steady-state solution to the diffusion equation in three-dimensional, called the Ivantsov
solution [34]. In the limit of low Peclet number we are considering here, the Ivantsov solution
can be written as (dropping the subscripts on vy, and Ryp) [34,103]

o~ 2D Csat |:U 28 v i|

R10g(noo/R) csotia R v
where 000 = (Coo — Csat)/Csar and 7 is the parabolic coordinate of the far-away boundary of
the system, at which point we have ¢ = c,. The log term in this expression appears because
we are in a regime where the diffusion length is larger than the boundaries of the experimental
apparatus, i.e. £ = 2D /v > 1. It is sufficient in most experimental cases to assume a
constant B = log(n/R) &~ 10 [97]. This is consistent with our expectation that the particular
details of the far-away boundary condition in the problem should not contribute greatly to the
final dendrite solution.

When the growth is mainly diffusion limited we have v < avyin, and we have found that for
dendrite growth from vapour the capillary perturbation is typically negligible in comparison
to the kinetic perturbation. (The opposite is true for growth from the melt, which is much
more commonly discussed in the literature on diffusion-limited growth [101].) Thus we can
substitute the unperturbed Ivantsov solution in for v on the right-hand side of equation (24),
which then gives to lowest order
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which defines the terms Ry, and Ry, [97]. For ice growth in air at a pressure of 1 atm we have
Riin =~ 30 nm.

Note that the Ivantsov solution, equation (25) in our case, gives only a single relation
between the tip velocity v and radius R, here with small perturbations from the capillary and
kinetic terms (assuming § < R and v < «vyj,). It is generally true for dendrite growth that
the diffusion equation alone only provides a partial solution to the problem. An additional
relation between these variables is required to select the correct v and R.

A principal result from dendrite theory [100,101] is that we can write down a dimensionless
‘solvability’ parameter that in our case becomes

g = 2RiinD 000 Coar

VR?  a Cod 29
and the theory further dictates that s will depend only on the intrinsic material properties, in
this case mainly on the detailed properties of the attachment kinetics. Thus s will be essentially
a constant term, with no direct dependence on D, 0, or other extrinsic variables.

To my knowledge there is no simple derivation of this seemingly simple result. As has
been noted in the context of solvability theory (e.g. [100]), equation (29) follows from the fact
that attachment kinetics here provides the additional length scale R}, necessary for uniquely
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Figure 10. Left: Measurements of ice needle growth at 7 = —5°C as a function of

supersaturation, o, for normal growth (lower points), electrically enhanced growth (middle points),
and electrochemically enhanced growth (upper points). Right: Photographs of c-axis electric
needles grown at T = —5°C under the influence of chemical additives. The picture in (a) shows
the electric growth phase. In (b) the field had been removed and the temperature changed to
T = —15°C, allowing normal growth to take place. Then plate-like crystals grew on the needle
tips. Data and photos from [97].

determining the tip radius. Calculating s for the case of ice is not yet possible, however, since
it would require a full three-dimensional treatment of the dendrite problem including kinetics,
which as yet does not exist. It is sufficient here to simply assume that s is a constant to be
determined from experiment.

Combining the solvability parameter with the Ivantsov solution then gives a tip radius that
is independent of 0,

B
R = — Ruin (30)
as
and a dendrite tip growth velocity
2Das  Cg
v = Ocos 3
RiinB? Ciolia

which depends linearly on 0.

Experiments with ice dendrites growing in air have found that v is indeed approximately
linearly dependent on o, as expected (while R is too small to be measured optically with
good accuracy). For dendrites at T = —15°C growing in air at a pressure of 1 atm, we have
found v & 50, um s~!, which indicates R &~ 1.2 um and as =~ 0.25. At —5°C we have
v~ 100, ums~!, giving R &~ 1.5 um and as &~ 0.2. The lack of faceting near fast-growing
dendrite tips further suggests that « & 1. Experimental data are shown above in figure 10.

4.3. Full modelling of dendrite growth

There exists an extensive literature on modelling dendrite growth in numerous different physical
situations to varying levels of approximation, which I will not cover here. Results from analytic
calculations reveal that a stable dendrite tip, with time-independent vy, and Ryp, is only possible
when the capillary and/or kinetic perturbations include some spatial anisotropy. For a purely
isotropic material, available for example in computer simulations, the tip frequently splits as
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the dendritic structure grows. We essentially ignored the anisotropy inherent in « in the above
simple discussion, but « is certainly anisotropic and we expect that the degree of anisotropy is
important for determining the value of the solvability parameter s. Dendrite theory remains an
incomplete theory in that one cannot precisely calculate s even with rather simple (yet realistic)
physical systems.

There is also a large literature describing computer modelling of diffusion-limited growth
and the formation of dendrites, which again I will not cover here. Computer models can
be divided into two broad camps—‘front-tracking’ models, in which one must keep track
of the solidification interface explicitly, and ‘phase-field” models, in which the solidification
front is numerically smoothed and not explicitly tracked [104—106]. The latter technique is
more popular, partly for its computational simplicity. Unfortunately, quantitative agreement
between full three-dimensional simulations and experiment is not entirely satisfying even for
the simplest and most well-understood experimental systems [104].

Faceting greatly complicates the full modelling of dendritic growth, and to date the
analytic theory describing faceted dendrites is limited [107], as are computer models [108,109].
Experimentally, faceted dendrites have been studied at some level in ice [97,110] and as well
as in other materials [111]. At a qualitative level our understanding of faceted systems is
fairly good, but a full quantitative theory does not exist even for the simplest faceted dendritic
growth.

In summary, we find that the relatively simple dendrite theory described above provides
a reasonable semi-quantitative description of the growth of the tips of ice dendrites. It
gives reasonable agreement with experiment and shows how the growth scales with various
parameters. Solving the full problem, including faceting, side-branching, and other factors,
remains a formidable task.

4.4. Electrically and chemically modified ice dendrite growth

When an electrical potential is applied to a growing ice dendrite, the diffusion equation becomes
modified by additional forces, especially near the dendrite tip. The resulting electrically
enhanced growth exhibits some interesting behaviour that can be described with an extension
of the theoretical treatment above [97]. The normal diffusion equation is replaced by the
Smoluchowski equation [103, 112], which describes diffusion in the presence of an external
force. We then have

9 .- -
a—j = DV - (Ve +cVd), (32)
where the external force felt by the water molecules is described as the gradient of the effective

potential

_5
kT

where & is the molecular polarizability and the electric field is the gradient of the electrical
potential E = —V¢ [103]. Again we can assume the slow-growth limit and take dc/dt =~ O.
The continuity equation at the interface yields the normal component of the surface growth
rate as

o= (E - E), (33)

D - -
n-(Vc+cVO)|gur. (34)
Csolid

Uy =

The boundary condition at the crystal surface is now changed by the fact that the applied
potential changes the equilibrium vapour pressure, which we can see most easily in the spherical
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case. Consider a spherical droplet of radius R and charge Q, where we assume the charge is
localized at the droplet surface. The electrostatic self-energy of this charge

1 1 Q?
24mweyg R

is independent of the dielectric constant of the droplet, since there is zero field below the
surface. If we pull one neutral molecule out of the droplet, then this changes Ugjecirostatic DY the
amount

(35)

Utlectrostatic =

W _ 1 Q%8R (36)
electrostatic — 87‘[80 RZ aN
1 2

— _Q_ (37)

32720 cona R
If the molecule has a nonzero polarizability, then pulling the molecule off the droplet releases
the polarization energy

dUpola: = %_Ez
1 Q?
_e < 38
16722 R* (38)
where £ ~ 3.4 x 107 C2mN~! for a water molecule.
These energies contribute to the equilibrium vapour pressure like edV/*7 | yielding for the

spherical case (ignoring the surface energy contribution)

2
~ Un Rgs RP01
Csurface ~ Csat (1 + o - F + R2 | (39)

where RZ = eopj/2¢somakT, Ry = Ej/kT, and 9o = Q/4meoR is the electrical
potential applied to the droplet. Note the presence of both electrostatic and polarization
terms in this expression, the latter being zero for nonpolar molecules. In the case of ice
Res ~ 0.2(¢o/1000 V) um and Ryo1 ~ 1.0(¢/1000 V) pm.

The modified Ivantsov relation then becomes [97]

S P ¢ R (40)
BR Csolid R R2
with
2¢g 2
3lec = - (fo ’ “D
Csolid B*kT
where C = 1 + 2I'écs01id000/€0 and I' &~ 0.2 is a dimensionless geometrical constant.

Of course this is only an approximate solution to the Smoluchowski equation, which takes
the form of the normal Ivantsov solution (in the slow-growth limit) modified by several small
additional terms. We expect that a full numerical solution would yield the same basic result,
although probably with additional small geometrical corrections.

In the case of ice Rejec & 40(gp/1000 V) nm and 2& cso1iq/€0 = 23.5, giving C =~ 1+4. 704
at T = —5°C. The electrical perturbation can be incorporated into the solvability relation by
defining the modified length Reomy = R}, — CR2../R and again assuming that this is the
additional length scale necessary for uniquely determining the tip radius. This then yields the
new solvability relation

2
D (R @)
vR Csolid R kin R
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Combining this with the modified Ivantsov relation then yields a quadratic equation for the tip
radius [97]

R>—~ RyR+ —R2 =0, 43)
where Ry is the tip radius when Rgjec = 0.

For small values of R the solution of this quadratic equation shows that R decreases,
and thus v increases, with increasing applied potential. The quadratic equation has no real
roots when Rgjec > (R, Ro/4C) 17z indicating that the above modified dendrite theory cannot
be used for large Rejec, Or equivalently when ¢y is above some threshold potential @gresh. The
lack of real roots indicates that above @usn neither surface tension nor attachment kinetics
can stabilize the tip radius, at least not in the usual sense. At this point the tip experiences
runaway growth as R — 0 under the influence of the Mullins—Sekerka instability (here
enhanced by electric forces). The tip velocity thus increases until it is stabilized by some
other mechanism [97].

Electrical effects in the growth of ice crystals from the vapour were first described by
Mason and collaborators [113, 114], and were subsequently quantified as a function of the
applied electrical potential [97, 103, 115-117]. The existence of a threshold potential was
established in these measurements, and the tip velocity as a function of ¢y below threshold
was found to be in good semi-quantitative agreement with the above theory. Observations
measuring the dendrite tip velocities as a function of supersaturation o, as well as ¢, revealed
a number of features expected from the theory [97]. The observations showed a threshold
potential of ¢y &~ 1000V, which is roughly independent of o, consistent with the above
theoretical expectations.

Interestingly, trace chemical additives in the air can have a dramatic effect on electric
needle growth, even when the concentration level is too low to produce any perceptible change
in normal crystal growth. In particular, chemical additives can induce the electric needle
growth to be along the ice c-axis, and such needles grow approximately three times faster than
electric needles in clean air, as is shown in figure 10. A number of chemical additives at the
100 ppm level produce these rapidly growing needles, including various alcohols and acids, as
well as chloroform, xylenes, methylene chloride, and even gasoline vapour [97]. Acetic acid
is particularly effective even at concentrations as low as 1 ppm, which produces essentially no
change in the normal crystal growth. It appears likely that the additives are concentrated by
the electric fields and gradients near the needle tip, thereby enhancing the chemical effects.

The observations indicate that growing needles have tip radii of R* &~ 360 nm for clean
air electric needles at T = —5°C, as determined using the Ivantsov relation, again roughly
independent of 0. In the presence of chemical additives the higher electric needle velocities
imply R* ~ 90nm at ¢y = 2000V, also roughly independent of o,. The tip stabilization
method at high applied potentials is still not understood.

5. Outlook

A close look at the formation of an individual snow crystal reveals that this is a remarkably rich
and complex event. Although it involves little more than the organization of water molecules
into a crystalline lattice, many questions about the growth process remain unanswered.
Dendritic structuring and pattern formation—both ubiquitous results of diffusion-limited
growth—are one fascinating part of the snow crystal story. Dendrite theory provides a
satisfactory semi-quantitative picture of this phenomenon, at least for the growth of well-
developed dendrites with near-constant tip radii and tip growth velocities. The theory does
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not include faceting at present, as this has been found to be a formidable problem. Progress
toward a full theory of dendrite growth, including attachment kinetics, has been slow for many
years and is likely to continue so.

However, there are certainly several interesting areas in dendritic snow crystal growth that
remain unexplored. Can one better understand the transition from faceted growth to dendritic
growth in a quantitative way? What happens in different background gases, and at different
pressures? Can one further understand the effects of external stimuli on dendrite growth, such
as electrical and chemical effects? 1 suspect experiment will lead the way in these areas,
especially quantitative experiments which measure growth under well-controlled conditions.
It seems likely to me that further surprises await the experimenter who ventures to explore
these and other questions about ice dendrite growth.

The growth of plain hexagonal ice prisms remains perhaps the most puzzling aspect
of snow crystal growth, in spite of its apparent simplicity. The snow crystal morphology
diagram, well documented now for 75 years, has still not been explained at even a qualitative
level. Surface melting appears to play an important role, as do unusual growth instabilities,
but major problems remain unsolved. The morphology diagram is continually demonstrated
to us by snow crystals falling from the sky in copious numbers. Surely we can understand
why snow crystal morphology has this unusual dependence on temperature. In my opinion,
this area is ripe for progress on both the experimental and theoretical fronts.

On the experimental side, we still do not possess accurate measurements of ice growth as
a function of temperature and supersaturation for the two principal facets, which would tell us
much about o (7, og,) and the growth mechanisms. This situation will likely change soon as
new experiments address the systematic problems that have plagued earlier efforts. Not only do
we need measurements of prisms growing on substrates in near-vacuum, but also measurements
of levitated prisms growing in various background gas pressures. The combination of data will
speak volumes about the different instabilities that appear to dominate snow crystal growth
under different conditions.

On the theoretical side, we need a model of how crystals grow in the presence of surface
melting. This implies a better understanding of crystal growth in the near-equilibrium limit,
when evaporation and growth are simultaneously occurring at rates that far exceed the net
growth rate. We also need to broaden our horizons when it comes to crystal growth instabilities,
including those relating to the growth of thin ice plates and needles. This is an area of
considerable general interest, as it appears that instabilities of many varieties abound in growing
systems.

There is also the vast, unexplored topic concerning the effects of chemical impurities on
ice growth. I suspect many surprises are in store when we begin to understand the chemical
catalysis of crystal growth in general, and of ice growth in particular. Again it is likely that
quantitative experiments will lead the way in exploring this potentially exciting territory.

Snow crystal formation provides a fascinating case study of the physics of crystal
growth, requiring a deep understanding of the nanoscale dynamics of solidification and pattern
formation. By studying snow crystals, one can gain insights into many fundamental aspects
of materials science. There is much that remains to be learned.
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