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ABSTRACT

The process of growth by coalescence is examined from the viewpoint of a discrete rather than a con-
tinuous accretion process. It is concluded that, for drops beginning growth at twice the volume of their
neighbors, random fluctuations in the times taken for different drops to effect captures can lead to the
formation of a complete raindrop spectrum in times shorter than that required for growth to raindrop size

by the continuous growth process.

Under typical conditions, drops of 23-microns radius can form in the order of 5 minutes in a cloud of
droplets of 10 microns, while smaller numbers of much larger drops can be expected in reasonable times.
The latter are likely to be important in chain-reaction theories.

1. Introduction

The growth of raindrops in warm clouds is now a
well established fact. Recent work, such as that of
Battan (1953) and Murgatroyd (1954), appears to be
establishing the coalescence process as one of consid-
erable importance, even in rain formed by clouds
whose tops extend considerably above the freezing
level.

Bowen (1950) has theoretically investigated the in-
fluence of the most important cloud parameters, and
Ludlam (1951) made similar computations and con-
cluded that the process might be initiated by salty
droplets from sea spray. However, early theoretical
work on this problem seems to indicate that the growth
of cloud droplets, which arises solely from the collision
of drops of different sizes, proceeds too slowly to
account for the appearance of raindrops within the
observed times.

Thus, various workers set out to establish other
phenomena as a basis for faster growth. Cochet (1951)
has indicated that charges will have a significant effect,
and similar experimental results have been reported
by Telford et al (1955). Woodcock (1952) has exten-
sively investigated the occurrence and growth of large
salt nuclei, but as yet has not established a completely
convincing case.

Recently, East and Marshall (1954) have modified
Langmuir's (1948) calculation of collection efficiencies
to include turbulent accelerations of the air, but the
presence of such motion as is required to give a sig-
nificant effect has yet to be established.

Ih. the paper by Telford et al (1955), a new aero-
dynamic effect involving high collection efficiencies
between nearly equal drops is described ; it may prove
to be of importance in initiating coalescence.

In this article it is hoped to demonstrate that, quite

apart from the effects mentioned above, the time re-
quired to initiate growth by coalescence is considerably
less than indicated by previous treatments. All the
work done in the past has been based on a continuous
distribution of the water to be collected, whereas in
actual fact the collection is restricted in space to the
actual positions of the droplets.

Calculations, such as those of Langmuir (1948) and
Bowen (1950), all appear to have been based on the
production of big drops according to the growth
equation

pdV/dt = 7r*UEw,

where p is the density of water, ¢ the time, V, r, U and
E are the volume, radius, terminal velocity and collec-
tion efficiency, respectively, of the growing drop, and
w is the water content of the cloud through which the
growing drops are falling.

This means that for every time, 8, however small,
the change in volume of the growing drop is

3V = (xr* UEw/p) o,

which is, of course, not really the case, since 6V must
be an integral multiple of the volume of the cloud
droplets gathered up.

In other words, in an actual cloud, the water to be
collected is not uniformly distributed in space but is
grouped in discrete droplets of definite volume.

In this article an attempt will be made to correct
for this deficiency, and it will be shown that the correc-
tion is very important.

2. General solution

To simplify the situation sufficiently for mathemati-
cal treatment, a model will be taken in which the
collected droplets are all of one size and do not change
in size or concentration with either time or position.
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The history of a spectrum of larger drops growing in
these smaller droplets will then be deduced under the
assumptions that the growing drops do not in any way
affect each other, and that the concentration of the
droplets available for collection does not change owing
to their removal by coalescence. These assumptions
will be discussed at the end of the article.

The differential equation describing these conditions
can be derived, and solved, as follows.

If the cloud droplets are receding in front of the
collecting drop with a terminal velocity u, the growth
equation is

8V = (xr*Ew/p)(U — u) 8t,
where § V is the average volume increase of the growing

drop in time &, and the other symbols are as defined
above.

When § Vg is the total volume increase of K growing
drops of the same size,

K (wr*Ew/p) (U — u) ot
= (nx + €)v, 0 <

§Vk

e < 1,

where ng is an integer, and v is the volume of each of
the collected droplets.
When K is made sufficiently large, ¢/nx — 0; thus,

8Vx — ngv.

If 8¢ is so small that the chance of a collecting drop
acquiring more than one cloud droplet is negligible,
the probability 6P of any one of the K drops having
captured a droplet in this time is

8P = ng/K = (wr*Ew/pv) (U — u) 8t.

Now, let the volume of the collecting drop be j cloud
droplet volumes, i.e., V = ju, where j is an integer.
Note that j need not be an integer; but this consid-
erably simplifies the notation and is physically suffi-
cient. Hence,

3 Ewu
oP; = -
4

. U
2 — = 1) 6t = A; 8t (1)
ap %

where a is the radius of the cloud droplet, and 8P; is
the probability of a drop of volume jv collecting a cloud
droplet in time 8¢ following selection.

Now, consider the change in a distribution after the
lapse of a time interval &t.

The number of drops per unit volume of cloud of
volume 7v at time ¢ + 8¢, N(rv, t + 6t), will consist of
those of this volume at time ¢ which have not under-
gone coalescence in the time interval 8¢, together with

those of volume (r —1)v which have collected a droplet.
Thus,

N(r, t+6t)=N(r, t) (1—A, )+ N@r—1, ) A,_1 5¢:

and so,
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AN(r,t)/ot = A, a N(r—1,1) — A, N(r,8). (2)

The relevant solution to this equation may be ob-
tained by starting at » = 1 and working up through
increasing 7.

Observing that N (0, ¢) = 0, one may write

ON(1,8)/0t + A, N(1,1) = 0;
and therefore,
N1, t) = Lie,

where L; is the constant of integration. Substituting
the initial conditions, we find

N(1,t) = N(1,0) e=4.

By repetition of this process,

N2, = N(1,0) [4:/(4: — A (et — g2
+ N(2,0) e,
and
v - o [ A
(Az - Al)(A& _ Al)

+ A1A2(6_A2” — 6_‘13t) ]
(AL — 42) (A5 — 4>)

A4s

— (e—Azt — ~A3t)
3 2

N(2,0
+ N2 0~

+ N(3, 0) e,

Considering these solutions, let us postulate a
solution :

NGt = i N(z, 0)

=1

j—1

IT 4,
k=i

|
- _} (e—Azt _ e—,a;t) . (3)
J
I1 4x — 4
k=i J
ke #l
Since the differential equation is linear, a general
solution is any linear combination of special solutions

which satisfies the boundary conditions. Hence, it is
sufficient to prove the above formula for

N(i, 0) =0,
N(i, 0) =1,

1 # m,
= m.

That is to say, we solve the problem for one initial
size of the growing drop and find the solution for an
initial distribution by adding the separate solutions
for each size.

Thus, we have, putting 7 = m,
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141 j
NG » = 1 2 Al[kI_I (1—4,/407 ](E‘A"—e—Ait).

jl=m

k=l
Now, let
i
IT (1 - (4/4)77 = B, 4
W
Therefore,

1 4-1
N(]! t) = — Z ALBz""j(e—A” — e"Aﬂ)’

jl=m

and, terminating the sum at j instead of j — 1,

1 4

NG, t) = — 3 ABmi(e—4rt — ¢~4it),
Aji=m

which is permissible as exp —Ait = exp —A;t when

! = j. Hence,

~Ajt 7

Z A,Bm1,

i l=m

1 7
NG, ) = — 3 A4,Bmiean —

jl=m

It is later proven that

J
Z AzBlm’j =

l=m

[see (9)7]. Hence,

1 7
NG, t) = — > AB/ie4u,
Ajl:m
Substituting this in the differential equation, one
obtains
AN (j, ) L

j
—— L = A 2B m, 7 e—Alt
ot mhm(al

for the left-hand side. For the right-hand side,
Aia NG — 1,8 — 4; N, 6
i—1

= Z A Bl g—dun

L=m

j
Z A By e—Au,

l=m
Now, from (4),
Brint = [1 — (4/4,) 1B
Thus, the right-hand side is

j—=1 J
2 Al — (A/A)]Bimi e — 37 A By g4
t=m l=m

1 7

= — — A£2Blm'7‘ e—AU
jl=m
— 4,[1 — 4;/4,)1Bm7 et
1

j
AIQBZ"LJ e—ALt’
Aj l=m

i
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which is the value obtained for the left-hand side.
Therefore,

1 J
NG ) = - & 4B et (5)

jl=m
is a solution of the equation, and the general solution is

7 N@,0) J .
N(], t) = Z —_— Z AlBli" e—An, (6)
i=1 A; i=i

It is seen in (1) that the terminal velocities of the
collecting drop and collected droplet, together with
other relevant physical quantities, specify the A4;'s.
One could evaluate the 4;'s, and hence the B,*’s, and
develop a solution. This would, however, demand a
tremendous numerical effort and is not essential to a
clear picture of the actual process.

Before useful numerical solutions to the equation
are discussed, there is one more mathematical point
requiring attention.

The solution above gives a distribution showing the
number of drops of a given size per unit volume of
cloud at any specified time — as might be observed,
for example, in sampling the distribution of drop sizes
in rain. However, there is another type of display
which is of more use to us here and which can be
derived directly from the preceding argument. This
is the distribution showing the number of drops which
increase from size myv to size (m + =»)v, say, in time
intervals greater than ¢ and less than ¢ + 6. This dis-
tribution is used later to bring out the essential differ-
ence between the old and the new theories.

Considering once again only those drops of volume
mv at t = 0, let us denote the number reaching the
volume (m + n)v in a time between ¢ and ¢ - 8 by
M(m, n, t) 8.

These are the drops of size m which have # captures
in a time between ¢ and ¢ + 8¢ following selection. The
number of drops of size greater than j — 1 is

¢
f M(m, j — m,t) dt.
0

On the basis of (5), this equals

2 N(g, b);
q=J
and for drops greater than jv in volume v,
t ]
[ M@ =m 41 = £ Nao.
0 g=j+1

Subtraction gives

, |
j'mﬂmJ~mJ%wﬂmj—m+L»]m=Nu».
0

Differentiating and using (2), we obtain
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M(m,j — m, ) — M(m,j —m+1,1) = ON(j, i) /ot oosr e —— e
=A4;a NG =1, —4; N3G, 0. S et me4i=20
Hence, oosl
aE
M(mvj_mvt)=Af——1N(j—1vt) %
~ 003
i—1 E
= 2 4Bt et : /
l=m F—: ocozb |/
or 3 /
m+n—1 !
_M(m, n,t) = Z A B momtn—l gt (7 ook ! _
=M / \
It is interesting to note that (7) can be established 55 6 25 ES =0

on an entirely different basis and is so presented in the
appendix.

3. A useful analytic solution

We will now proceed with the numerical develop-
ment of (6) under different physical assumptions as
to the nature of the A4,'s.

Let us consider the case where the drops are well
above cloud-droplet sizes, say in the radius range of
75 to 750 p. Here the relative velocity of the drops
and the droplets may be taken, to a good approxima-
tion, as proportional to the radius of the collecting
drop, thatis, U — u = kr.

Inserting this in (1), we have

3 Fw 3 Ew 3 Ewk
oP; = ——*3(U—~u) 6t = - krj?l3 8t = — —— 7 8t,
4 ap 4 ap 4 p
since j = V/v = (r/a)?. Thus, 4; = (3/4)(Ewk/p)j.

Substituting in (4) and making E independent of

radius, and hence of j, we have

1O

uj=10
—meme =20
——— =30
o8
2
£ 06
[
E o4
5
=
Nl
5 o2

o]

Volume, jv.

F16. 1. Graph shows proportion of original drops N(j, T), of
volume jv after growth time 7. This solution is for case when
relative velocities of drops and droplets are proportional to radius
of capturing drop, and all droplets are initially twice volume of
cloud droplets. Values of T for three graphs have been taken to
make mean volume of the drops, g;v, 10, 20 and 30 times cloud-
droplet volume, v, respectively. Curves have been normalized
to bring means into coincidence, and have been displaced ver-
tically for clarity. Curves are almost identical, showing rapid
tendency to limiting form for more than 20 captures.

J

F16. 2. Graph shows curves equivalent to those of fig. 1 for
different initial drop sizes mwv, when growth time is taken to give
mean wv of curve at 20 cloud-droplet volumes. Curves show
number of drops of different volumes and clearly illustrate how
standard deviation, o, becomes less when growth starts at larger
sizes. Solution is for same case as fig. 1, except for differing initial
volumes.

BW=£D—WM*

k#l
i B — Nt i i
-0 (=) - g/ me-o
k=m k k=m k=m
k#l k #l k#l
it (=1

T m— D)L —m) G- D!
Thus, (5) becomes

NG, b ! Zj: JH(=1" exp- (35) 4.
’ Ji=m (m—=1) (—m)! G—=D)! ‘e
Let T = (3/4) (Ewk/p)t. Then
. 1 7!
N(J? t) == 1 (3 )
Jj (m =11 —m)!
d (J—m)!
X 3 (— )i e
I=m G=D0D'{1—m)!
i
— i—-l(:m_1 Z (_l)l—m j—mcl_m B_ZT,
I=m
oer /o PPt N
\—-—mmm= mMma2;n=30
o5t \
o4l
©
<
£ o3}
3
0‘2r
Ol - /
1/ >
(s} [ 2 3 4 5

F16. 3. Curves show functions M (m, n, T), where M (m, n, T) 8T
is proportion of drops of volume mv at T = 0 to experience n
captures in time between 7" and T + 8T. This is for case where
(rielative velocities of drops are proportional to radius of collecting

rop.
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where 1C,,_; is the appropriate binomial coefficient,

7
= Gy €T T O (— e T)

=m

= 1C,_; e (1 — e~ T)i—m, (8)

It is interesting to note that this is a term of the ex-
pansion of [e? + (1 — e7) ]~ Thus, the distribution
is a binomial distribution of negative index.

The time distribution for this case is

M@m,n,t) = (m+n —1)m=2C,_;emT(1 — ¢ T)n1,

These functions are plotted in figs. 1, 2 and 3 for
several values of m and #.

It is easily shown that the mean volume (u) and the
standard deviation (¢) of N(j,t) are u = mwve?, and
o = u(mt — y™)i Therefore

v . 1 m
— = (m—l —_— #—1) I oo - 1 —_
7 m? 2u

Thus, as time passes, the mean of the distribution
increases exponentially, being equal in this case to the
value obtained from the continuous-growth equation.
When the drop has increased in volume by a factor of
100, the spread (¢/u) has increased to within 1 per cent
of its limiting value, m—% Under these conditions, the
smaller the drops are in the beginning the greater will
be the spread in the final sizes, and no appreciable
spreading occurs after the first few hundred captures.

4. A numerical solution relevant to cloud-droplet sizes

We have just considered the case in which the
velocity of the droplet relative to that of the pursuing
drop is proportional to the radius of the drop. Let us
now examine what happens when both drops are falling
at velocities as determined by Stokes’ law. This is an
accurate representation of the motion of cloud drops
and is true, approximately, up to 50-p radius.

Rewriting of (1) gives

3 Ewu | U
4; == JZ/a(__.l).
4 ap u
Under Stokes’ law, U = (2p/9)gr?, g being the accel-
eration due to gravity; so U/u = r*/a®> = 723 since
V/iv =7 = (r/a)} and
3 Ewu

A, ==
! 4 ap

j2/3(j2/3 — 1)

We take E independent of radius, as before, and intro-
duce T = (3/4)(Ewu/ap)t as the new time variable.
Therefore

A; = (5 — 1), j=2,---,100,

are the numbers used to determine the distributions.
With the analytical case as a guide, it is clear that
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we must examine (5) for drops starting their growth
at volumes 2, 3 and 4 times cloud-droplet volumes and
experiencing 10 to 100 captures.

From this point onward, we confine our discussion
to the form of the equation given by (7), as this gives
the times which show so strikingly the importance of
the result, and as it also permits the numerical work
to be reduced to manageable quantities.

We have, from (7),

m-+n—1

Z A lBlmjm-f—n—l e—Alt_

Il=m

M{(m,n,t) =

The numerical work involves development of the
numbers

m—+n—1
AlBlm,m-l-n—] = Al H [1 —_ (Al/Ak):l-—l
i
m4n—1 m-n—1
= JI 4« Il (4r — A4p~"
k=m k}\:zz

This involves working to a large number of significant
mn-—1

figures, as Y. A;Bmmtr—1=0 but |4,B/omtr] >108

l=m

for several values at m = 2, n = 30; thus, owing to
the cancellations arising from alternating signs, the
accuracy of M (2, 30,¢) is about five decimal figures
less than the accuracy to which the coefficients of the
series 4:B2% must be determined. For example, at
m = 2, n = 10, one obtains the wvalues shown in
table 1.

As a computer program is required to operate at a
reasonable speed, the program used here was designed
to give only twelve useful decimal digits, and it was
found necessary to restrict the calculations to values
of m and »# which did not need more figures. Thus,
M (m, n, t) has been calculated for m = 2, » = 10, 20
and 30;m =3, n = 9,14 and 19;and m = 4, n = 8
and 13. The distributions for m = 2, n = 10, 20 and
30 are plotted in fig. 4. These curves should be com-

TasLE 1. Coefficients of series for M (2, 10, £) and the
largest coefficients in 3 (2, 30, £).

~

AiBa21

4.102635
22.515130
58.616401
94.075034

101.370859
75.377139
38.424268
12.884861

2.569506

0.231505

11
S ABeh = 0.000000.
=2
The number 438,23 = —153319.681013,

and 4B +151952.818327
elc.

= OV~ UTH WIN
P+ 1+T+1+1+

—




OCTOBER 1955 J. W.
o5 —— 10 Captures
o4k PR
o3}

S
oo
o2+
Ot
o ) I | ] )
A
° 8% 227 > e
212

F16. 4. These show distributions equivalent to those depicted
in fig. 3 when velocities of drops obey Stokes' law. Times for
same number of captures under previous theories are indicated
just below abscissa.

pared with those of fig. 3, which show the corresponding
distributions on the assumption about the 4,'s taken
for the previous section. This was that the rate of
growth is proportional to the volume of the collecting
drop.

The time measure is " = (3/4) (Ewu/ap)t. When
a=10u, E=10=1g/m? and p = 1 g/cm?, we
have ¢ = 1000 T sec.

It can be seen from the figure that, as the number
of collisions increases, the greater part of the curve
appears to advance towards longer times without much
change of shape. This shows clearly that the distri-
bution is virtually settled in the first twenty collisions
and, with the exception of very small ¢, the curve for
many more collisions may be obtained simply by
adding the average time taken for the 21st to the nth
collisions to the statistically distributed times for the
first 20 collisions. Alternatively, a specific time may
be allocated for growth, and the time remaining after
20 collisions employed in the continuous-growth equa-
tion to give a drop-size distribution. This has been
done in fig. 5, which shows the drop-size distribution
for drops initially 12.6 u in radius after 4000 sec in a
cloud containing 1 g/m? of 10-u radius droplets. The
size which would have been obtained on the continu-
ous-growth theory is indicated at 0.53 mm. As can be

b o
2
]
3
B oa
e |
E After 4000 sacs.
a czzL
4% Ol -
8
._é [S] 1 L 1 T
[ (IS 200 300 -=<Te]
o's3 S(mm
Rodius for continuous
growth

F16. 5. Graph shows number of drops having radius between
S and .S + 55 after 12.6-u radius drops have grown for 4000 sec
in cloud of 10-x radius drops at concentration of 1 g/m?

TELFORD

441

seen, substantial numbers of drops are greater than
this figure; in fact, virtually all the drops likely to be
recorded as rain are bigger than this. Another point
worth noting is that there are quite a number of drops
greater than 3 mm in radius. This feature will have a
profound effect on chain-reaction theories, where the
breakup of such drops is considered.

Fig. 6 shows curves similar to those of fig. 4 for
larger initial drop sizes; m = 3,# = 9, 14 and 19; and
for m = 4, n = 8 and 13. As can clearly be seen, the
same general behavior occurs here as for m = 2 with
increasing #. However, the spread in time becomes
much less as m increases, in agreement with the ana-
lytical case expressed in (8).

5. Contribution of the few, fast growing drops

The growth up to this point has been considered
from the point of view of tracing the growth history
of drops sufficient in number to provide the concen-
tration observed in rain. There is another approach,
however, which appears to be much more significant.
Let us now consider the history of drops similar in
abundance to those droplets in which they grow. How
long does it take sufficient of these to reach raindrop
size ?

The concentration of drops observed in rain is of the
order of 100 drops/m? whereas the number of drops
in a cloud is of the order of 10° m—2. Therefore, we are
interested in the growth of the 107% most ““fortunate”
of the cloud drops.

This requires a detailed investigation of the left-
hand tails of the curves shown in figs. 4 and 6. We
could examine these by developing (7) to many more
significant figures than used in the previous section,
but the arithmetic involved is prohibitive. An alter-

—_————m=3n=9

oo m=3n=i4
—— m=3n={9
ms=4n=8
—————— m=4n={3

85 o5t

F1G. 6. Curves show M{(m,n, T) in Stokes' law region for
values of m and # supplementing those in fig. 4. Narrowing of
distribution with increasing m is easily seen, and rapid approach
to limiting form for m 4 » about 22 is clearly visible.
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native approach lies in expressing the exponentials
involved as power series and calculating the coeffi-
cients. It so happens that this method gives greatest
accuracy near the origin where the direct calculation
was inaccurate, but, because of cancellations, requires
prohibitive arithmetic to obtain useful accuracy at
large ¢ where the former method gives

M(m, n,t) = A,B,mtn1 g4t

to the accuracy to which B,™=t»~1 and A4, were
determined. Therefore,
m-n—1

M(m,n, )= 3 A Bmmtn—ig—Au

I=m
m+n—1

1
Z Blm,'m+n—v~1 Al(l —A;t"-“E(Alt)?

l=m

1 . 1 \
__5_!(‘410 ..._;_s_!(__Alt) . )

I

0 (_t)s m+n—1
Z [ Z Blm,m+n—1 Als+l].

§=0 N ! l=m

Further, from the way By 1 is defined in the
appendix in (10),

m+a—1 m+n—1
II (1—(a/4)]7= I_Z Bmmtr i1 — (a/A0) 17

Putting z = « !, one has

m+n—1
0 4zde—1)"
l=m
m+n—l
= Z Bymemtn—l AzZ(Azz-l)"l
l=m
m-n—1
=—3 Z Blm,m—i-ﬂ—-l
l=m
XA1[1+AZZ+ (A 1Z>2~ . (A 12)8' . ]
Also,
m+n—1 mtn—1 mtn—1
0 As(de—1)t=(=2" [T 4, II (1-4a)
l=m i=m l—m
1-O
5
4 osf
=
%
% OE ﬁ‘-s

T

FiG. 7. Fraction of 12.6-u radius drops greater than or
equal to 22.9-y radius after time T.
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Therefore,
o m-+n—1
Z 28 Z Bim,m+n—1Als+])
8==0 l==m
m+n—1 m+n~—1
=(—z)"! JT 4, II [1+A4z+ )3+
l=m I=m
Hence,
m-+n—1
S Bt (A) =0,  for 0<s<n—2,  (9)
l=m
m+n—1 m+n—1

Z Blm,7n+n—l (Al)nz(_l)n—-l H Al;

l=m l=m

m+n—1 m~4-n—1 m+n—1
Z Blm,m-f-n—-l (Al)n+1=(_1)n-1 H A, Z A,
l=m l=m —=m

m+n~—1 mt+n—1
Z Blm,m+n-—-1 (A l)n+2= (_ 1)71-1 ( H A l)

l=m =m

m-+n—1 m~+n—1 m4-n-—1
x("S ai+ 5 4L 4.),
l=m l=m 2>1

¢tc. Thus,

© (_t)q m+n—1
M(my n, t) = Z ——'_ Z Blm,m—f-n—lAls.fle’

s=n—1 S l=m

the first # — 1 terms of the summation being zero.
Then, for very small t, M(m, n, t) < ",
The arithmetic procedure is to develop the coeffi-

cients
m+n—1

Z Blm,m+n~1 Al"+0y

I=m

g=0y 1y21 Tty

and check the first two for accuracy by using

m+n—1
I Al) / (n — 1)!
and =
m+n—1 mt-n—1

This has been done for m = 2, » = 10, and the
result integrated with respect to ¢. Fig. 7 shows

ftM(m,n,t)dtform= 2, n = 10.
0

Now, let us consider a cloud model in which 90 per
cent of the water is in 10-x radius drops and 10 per cent
in drops of twice this volume. With a water content
of 1 g/m?, there will be (21.49 X 107) 10-x drops/m?,
and (1.19 X 107) 12.6-p drops/m?.

It is desired to determine the time taken for 100
drops/m? to experience their first 10 coalescences. Now,
100 drops/m3 represent 100/(1.19X107) =8.40X107*
of the total number of the larger drops.

Hence, referring to fig. 7, we see that at m = 2,
#n = 10, this occurs for T = 0.257; when v = 0.9 g/m?
and E = 1, thisis ¢t = (4ap/3Ewu)T = 5.11 min.
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The time under continuous growth for 100 12.6-u
drops/m? to undergo this number of collisions, when
the total water content and E are the same, is T =
1.84, that is, = 33.0 min.

Thus, in a cloud of drops of two size groups, one
twice the volume of the other and containing 10 per
cent of the water, sufficient of the double drops for the
formation of rain undergo 10 collisions in 0.257 time
units as compared with 1.84 time units if the same
number of double drops grow according to the previous
theory. Typically, these times are 5 and 33 min, re-
spectively, giving drops of 23-u radius.

Ludlam (1951) has reviewed the various factors
involved in the formation of rain by coalescence and
has concluded that drops of radii greater than 20y
can readily continue growth to raindrop size, whereas
smaller drops may not. He further suggests that such
drops may only become available in the form of drops
of sea spray in maritime air masses. As can be seen
from the preceding arguments, drops of sufficient size
are formed within 5 min of the cloud drops’ reaching
10-p radius; thus, many clouds will have a favorable
chance of raining without the action of processes other
than gravitational coalescence.

Another point made by Ludlam is that very large
drops, in far fewer numbers than the raindrops, can
significantly alter circumstances by leading to drop
rupture and so to chain-reaction processes. The statis-
tical process will produce such drops, and their num-
bers may easily be sufficient to be of importance.

It is to be noted that in this discussion the collection
efficiency has been kept independent of drop size,
whereas, almost certainly, this is not so in the region
considered. All the indications are that, in this region,
collection efficiency increases with drop size from very
small values to nearly unity. Langmuir has, in fact,
given figures for this function; but because of the
approximations in his calculations when the collecting
drop nears cloud-droplet size, there is still considerable
uncertainty as to their correct values. For this reason,
the collection efficiency has been kept at unity. Quali-
tatively, however, the effect of a collection efficiency
increasing with size may be seen quite easily.

For the case in which the probability of a drop
experiencing a collision in time 8 following selection
is 6P « &, one gets the Poisson distribution for the
number of collisions experienced in a specific time.
Hence, ¢/u = p~* — 0 as p increases for large .

When 6P « 9 6,

o 1 m
(i
o (m) Il-

for m = 2 and large ¢.

When 8P increases with V at a rate of (V/v)%3
L(V/v)2® — 17, ¢/u > 1, as is seen in fig. 5.

Hence, the inclusion of a collection efficiency in-

P
——— = 0.71,
(m)?

W. TELFORD

443

creasing with drop size will result in an even greater
spread, and the differences brought to light here be-
tween continuous and discontinuous growth will be-
come yet greater when the correct values of E are
included.

One other point worth considering is the effect of
replacing the cloud model used here with a model
involving a continuous drop-size distribution. This
also will result in an even greater chance for the few
drops to get away to an advantageous start. The
reasons are that, first, more than 90 per cent of the
drops in the model used here can never experience
collisions (other than being absorbed), as they are the
same size; and, secondly, the large numbers of drops
having experienced but few collisions will provide
larger and larger increments for the few bigger drops
to collect, so giving more opportunities for rapid
growth. It is hoped to analyze this situation quantita-
tively in the near future, to make a comparison with
the salt-nuclei theory.

6. Conclusions

The previous theory of rain formation by coales-
cence has been extended to take account of the random
fluctuations in the time intervals between successive
coalescences of drops of the same size. It is concluded
that:

1. Earlier treatments have greatly overestimated the growth
times required.

2. In a cloud consisting initially of identical droplets together
with some of double the droplet volume, a proportion of these
larger droplets will grow more rapidly than indicated by the
‘“‘continuous growth” theory, and spread in size during the
process to produce a spectrum covering all the drop sizes found
in rain.

3. Some of the larger droplets can grow to a size from which
further growth to raindrop proportions is likely in but a small
fraction of the times previously indicated. It may be unnecessary,
therefore, to invoke any other mechanism than free-fall coales-
cence to account for the formation of rain.

4. A few drops are likely to reach rupture size in reasonable
times. These may be important in chain-reaction processes.
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APPENDIX
From (1)
0P; = Aj ot,
where 6P; is the probability that a drop of volume

V = jo will collect a cloud droplet in the time &
{ollowing selection.
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Let us consider y such intervals of time; then the
probability that a drop will #ot have had a collision
at the end of time ¢ = y &t s

Pi(t) = lim (1 — A; 8t)v

§t-0
= lim [(1 — A, &t)!/4s 8¢ div e
= [lim (1 — A; 8£)"4; 864it = g=ait,
§t—0
Therefore,
dP;(t)/dt = — A; e 44,

and this equals — M (7, 1, ¢) in the notation introduced
earlier in the body of the article; therefore,

M3, 1,t) = 4;e 45,

where M (4, 1,t) 8t is the probability of a drop of
volume jv collecting a cloud droplet in a time between
t and t + &t after selection.

M (m, n, t) 6t must now be found ; that is, the proba-
bility of a drop of volume mv at ¢ = 0 having its nth
collision in a time between ¢ and ¢ - &t.

This time ¢ will be the sum of the times taken for
each separate collision.

If ¢#; is the time for one collision, when the volume
is Iy,

mtn—1
= Z tl.
I=m
The probability distribution of £ may most easily be
determined by use of moment-generating functions
(Hoel, 1947). The moment-generating function, M (a),
for the distribution of ¢ is defined so that the rth
moment of ¢ about the origin is the coefficient of
a’/r! in the power series expansion of M («).
Since the A4;'s are independent, we may use the
statistical theorem which states
' m+tn—1
M) = II Mi(a),
I=m
where M () is the moment-generating function for
the distribution of ¢;.
Now, the moment-generating function M;(a) is

the moment-generating function of the distribution
M7, 1,1), which is

Mi(a) =f et M (G, 1, 1) dt,
0

where o must be kept small enough to ensure con-
vergence. Thus,

Mi(a) = f et 4y e 41 dt '
0

o0
=Azf ela—ADt gy
0
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_ A fwe(“‘~4”‘d(a — A,
a— A Yo
where @ must be kept <A4,.
Now,
Mi(a) = —.A‘ [e-ti=ar]y
a— 4,
= —4di/(a—4) =[1 ~ (e/4)]"
Therefore,
m+n—1

M) = II [1 - (/41 ]

l=m

m+n—1

= T B[t = (a/4)T

l=m

(10)

Using the theory of partial fractions, we have
m+n—1
Byrmir=t = [T [1 ~ (4/40 717,
i k=m

Ryl

which was given earlier as (4).

By using the equation defining M («), one may show
that a distribution with the moment-generating func-
tion M (a) is

m+n—1
Z A Bpromtn—l g—Au,
Th e
us, m+n—1
M@m,n,t) = 3 A, Bymmtnt g=du
I=m

which was arrived at by a different method in (7).
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