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ABSTRACT

The delta-M method represents a natural extension of the recently proposed delta-Eddington approxima-
tion to all orders M of angular approximation. It relies essentially on matching the first 2M phase function
moments and using a Dirac delta-function representation of forward scattering. Computed fluxes are re-
markably accurate at very low orders M of approximation, even when the phase function is strongly asym-
metric; thus the associated M X M matrix computations remain small and manageable. Flux is automatically
conserved, making phase function “renormalization’” unnecessary. Phase function truncation is effected ina
much more attractive manner than in the past; furthermore, truncation tends to zero as M — «. Errors are
shown to oscillate with (roughly) exponentially decreasing amplitude as M increases; which has the curious
consequence that increasing # by small amounts does not necessarily reduce error. Mie computations as-
sociated with the 5-M method can be considerably reduced, based on a simple technique for phase function

moment calculations proposed herein.

1. Angular error in multiple-scattering calculations

The difficulties of performing radiative transfer cal-
culations for strongly asymmetric phase functions are
too well known to need belaboring [see, e.g., the review
articles of Hunt (1971b), Hansen and Travis (1974)
and Irvine (1975)]. A direct attack on the problem
can consume enormous amounts of computer time and
storage space, as exemplified by the work of Dave
and Canosa (1974) and Hansen (1969b) among others.

Furthermore, the error properties of current com-
putational methods are not well understood. Irvine
(1975) remarks that “it is difficult to obtain an
a priori idea of the accuracy of a given order of ap-
proximation.” In a similar vein, Hunt (1971b) re-
marks that, “In the past, many authors . . . have
provided the reader with a somewhat vague measure
of the accuracy of the results produced, or even al-
lowed him to infer for himself the accuracy of the
procedure. . . .”

In order to remedy these problems of excessive
computation and vague accuracy, this paper presents
a new technique, the “6-M method,” for efficiently
computing fluxes in scattering media with strongly
asymmetric phase functions. The §-M method follows
logically from the recently proposed é-Eddington ap-
proximation (Joseph et al., 1976; Wiscombe and
Joseph, 1977).

1 The National Center for Atmospheric Research is sponsored
by the National Science Foundation. ’

Simply stated, the computational difficulties posed
by strongly asymmetric phase functions are all a con-
sequence of the fact that such phase functions cannot
be represented by polynomials of low degree. As a
result, intervening quadrature rules, series expansions,
systems of differential and algebraic equations, matrix
operations, etc., all become large and unwieldly.

Consider the plane-parallel, monochromatic radia-
tive transfer equation

al
b= —I+w-]7 (1)

ar

where the scattering term is

a9’
]E/ P(Q- Q) (r,Q")— (2)
o 4x

and where the following notation is used:

I(r,Q) radiation intensity

T optical depth

Q unit direction vector

B cosine of zenith angle of Q (with respect to
vertical)

¢ azimuth angle of Q (around the vertical)

2 albedo for single scattering

P(cosd) scattering phase function (depending implic-

itly on 7)
0 scattering angle.
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Consider P(cosf) to be expanded in (or at least ad-
equately approximated by) an N-term series of Le-
gendre polynomials P,:

P(cos) = % (2n+1)X, P, (cosb), (3)

n=0

where the coefficients X, are the moments of P with
respect to the Legendre polynomials

1 r
X, =E / P(cosb) P, (cos8) sinbdd. 4)
0

Then the standard procedure (Chandrasekhar, 1960,
p. 150) is to expand the intensity in an N-term Fourier
cosine series in azimuth, i.e.,

N
I(7,Q)= 3. In(7,u) cosme. (5)

m==(

[This is exact, given Eq. (3); Ix,1, In4e, etc., vanish
identically.]

Thus the azimuthal series (5) has N terms when
the phase function (3) is of degree N. This is ob-
viously burdensome when ¥ is large. Only the I, term
contributes to fluxes; it satisfies the equation

dl,
b= —10+w]0: (6)
ar
where
1 o
Jo=- / P ) o ()il M
-1

and where P is the azimuthally averaged phase
function

_ 1 27
Plus)=— / Pl + (1—u?) (1~} cosgJdé (8a)
0

T

N
=2 n+1)X,Po(u)Pa(y).

()

(8b)

A variety of computational techniques are used to
solve Eq. (1) (cf. Irvine, 1975). Of these, perhaps
the most versatile and general (from the standpoint
of being applicable to all values of optical depth and
single-scattering albedo) are discrete ordinates, its
close cousin spherical harmonics and adding-doubling.
These three approaches have been developed vigor-
ously by Liou (1973), Dave and Canosa (1974) and
Grant and Hunt (1968), respectively. While diverging
as to their details, these methods share a common
starting point—namely, the integral Jo, [Eq. (7)] is
approximated by a sum, assuming that the integrand
is close to a polynomial. There is nothing wrong in
principle with such an approach; Weierstrass’s theorem
assures us that every continuous function is arbitrarily
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closely approximable by a polynomial of sufficiently
high degree. The only question is: is “sufficiently
high” so high that the whole calculation becomes
ponderous or even impossible?

We now define

no=degree of “sufficiently accurate” polynomial ap-
proximation to integrand PI, of J,,
m=number of terms in sum replacing J.

Clearly P is an Nth degree polynomial in ' [Eq. (8b)],
so its product with I, is at least an Nth degree poly-
nomial in g’ (#e>N). Also, in general, #; is on the
order of 7ny (e.g., for Gaussian quadrature of J,
n17= §n,). Summing up, we have

n1~ny> N.

But in spite of this heuristic argument, most in-
vestigators take #,<<N. The reason is threefold: first,
computer time requirements escalate roughly as ng
(Hansen, 1971) and storage requirements as 3, al-
though these vary somewhat from method to method.
Second, numerical ill-conditioning often poses an
upper limit to #,, which is on the order of 20-30 for
the discrete ordinate method (Liou, 1973; Irvine,
1975), and which necessitates lengthy “stabilizing
transformations” in the case of the spherical har-
monics method (Dave and Canosa, 1974). Third,
round-off error growth is often such that it would be
dangerous to take #;~N even if the first two objec-
tions were eliminated. For these reasons, almost all
authors, even those with extensive computing re-
sources, keep 7,< 100.

It is perhaps instructive to note values of #; used
by some well-known investigators in this field. van de
Hulst and Grossman (1968) used #n;=14-28 for
g=0.75, and #n;=48-64 for g=0.875 Henyey-Green-
stein phase functions. Hansen (1969b) used 7,=40 for
an N=>50-term aerosol phase function, and #,=96 for
an N=140-term cloud phase function; he generally
increases #; until the results “suggest” errors are
<0.19, (Hansen, 1969a). Liou (1973) takes n;=4-16;
Twomey et al. (1966), n,=20; and Grant and Hunt
(1968), typically n;=14-16. (The small values of 7,
in the last group of papers are probably based on
the empirical observation that increasing #; beyond
20 or so does not obviously reduce the error.)

All investigators who take #,<XN hope that they
can work to within a few percent accuracy, either by
employing artifices which effectively reduce N, or by
increasing #; in steps and watching how the results
change. Hunt (1971b) gives quite a candid summary
of the latter procedure: . . . it is not possible to
give a precise value of m[=3%n:] to be used . . .
This can only be determined by repeating the ex-
periment for various values of m, and carefully as-
sessing the changes in the computed results.” But
this means stepping », through a series of values all



- 1410

of which are <<V. Thus it is not surprising that a
normal sort of convergence, in which the level of
accuracy increases with #,, is not observed. Hunt
(1971a) provides dramatic illustrations of this: in
stepping 7, from 16 to 64, for phase functions with
N=223 and 341, he finds no evidence of convergence
beyond one significant figure even at #;=64. Dave
and Canosa (1974) show flux values which seem to
have converged to two significant digits at »#,=10-20
but which continue to oscillate in the third or fourth
significant digit from there all the way up to #,=100.
Potter (1970), using doubling for an N=350-term
phase function, found absorptivities up to 0.6%, for
a nonabsorbing layer when he took #,=96; therefore
his fluxes are converged to only two significant digits
even with such a large #,.

The primary technique for reducing N is “trunca-
tion” of the forward peak from the phase function
(reviewed by Hunt, 1971b). A second procedure is
phase function “renormalization” (reviewed by Wis-
combe, 1976). Both procedures are ad koc, and none
of the proposed variants (there are at least four for
renormalization alone) is demonstrably superior to
any other. Indeed, the number of reasonable trunca-
tion and renormalization procedures is limited only
by one’s imagination.

Hansen (1969a) and Potter (1970) truncate by
extrapolating the ‘“‘shoulder” of the Mie phase func-
tion into the forward peak region. Two other methods
are given in this paper (Sections 3 and 4) and Wein-
man (1968) gives yet a fourth. Potter’s truncation
reduces N from 350 to 50, enabling him to take #n,=24
instead of #;=96. Both Hansen and Potter quote
flux errors (caused by truncation) in the range 0.3-1%;
errors tend to be worst for small optical depth and/or
large solar zenith angles.

Renormalization performs (hopefully small) cor-
rections to the azimuthally averaged phase function P
[Eq. (8)] in order to conserve flux. That is, it is
designed to ensure

dF d i
~—=—[2w / MIodu]=0, ©)
dr dr -]

when w=1, where F is net flux. From the transfer
equation (6), this means that

/ (Jo—Io)du=0. (10)

Eq. (10) is identically satisfied by the exact form of J,
when the phase function is normalized to unity:

1 o
- / P (' )du=1 (11)

which, from Eq. 8(b), is equivalent to X,=1. Re-
normalization forces Eq. (10) to be identically satis-
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fied after all integrals have been approximated by sums.
The large spurious absorptions in Potter’s (1970) cal-
culations indicates the price one pays for not renor-
malizing. Dave and Canosa (1974) exhibit spurious
absorption in the third or fourth significant digit, for
the same reason. Renormalization not only conserves
energy but also allows the use of smaller values of n;;
Hansen (1971) notes a case where renormalization
enabled him to reduce #, from 60 to 28 with no loss
in accuracy.

Section 4 lays out the theoretical basis of the §-M
method, which performs truncation in a much more
natural manner than heretofore, and which does not
require a separate renormalization step. The short-
comings of previous methods are described in Section 3,
and the error behavior of the §-M method is given
in Sections 5 and 6, using sample phase functions
taken from Section 2.

2. Phase functions used in examples

We shall employ three phase functions, P(cosf), in
assessing the performance of the 6—M method. They
are shown plotted versus 6 in Fig. 1a and versus cosf
in Fig. 1b. Two of them are Henyey-Greenstein phase
functions,

Pug(cosh) = i (2n+1)g" P (cosb) (12)

n=0

(Joseph et al., 1976), with asymmetry factors g=0.75
and g=0.85. The third is a Mie phase function for
wavelength 0.5 um, index of refraction 1.335, a gamma
size distribution with effective radius 10 uym and
effective variance 0.2 (cf. Hansen and Travis, 1974),
and an asymmetry factor 0.863. This Mie phase
function is typical for a stratiform cloud in the visible
spectrum.

The representation in Fig. 1a is the one customarily
used, since it makes the forward peak more visible.
But the representation in Fig. 1b is more truthful,
in that all our theories use the phase function as a
function of cosf, not 6. Fig. 1b makes it much more
visually apparent why truncation is useful; the for-
ward peak, especially for the Mie phase function,
looks very much like a spike, for which &(1—cosf)
is a good approximation.

The Mie and Henyey-Greenstein phase functions
were chosen because they are at somewhat opposite
extremes in terms of structure: the Mie function has
about as much structure as one is likely to encounter
in a polydispersed cloud or aerosol; while by contrast
the Henyey-Greenstein functions are very smooth,
have considerably lower and broader forward peaks,
and are shaped more like phase functions for smaller,
moderate to highly absorbing particles. The Legendre
polynomial expansions are consequently of quite dif-
ferent lengths: N~900 for the Mie function, while
N=86 (g=0.85) and N=49 (¢g=0.75) for the Henyey-
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PHASE FUNCTION

H-G (g=0.75)
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F1G. 1. The three phase functions used in various examples, plotted as functions of (a) # and (b) cosf.
Two are Henyey-Greenstein g=0.75 and 0.85 cases, with values at =0 of 28 and 86, respectively. The
third is a Mie case for a polydisperse water cloud of effective radius 10 um at wavelength 0.5 um, with a

value of 9.7 X 10 at §=0.

Greenstein cases. [These values of N are based on
the somewhat arbitrary criterion that X,<10-¢ for
n2N, of. Eq. (4), and are rough values for illus-
trative purposes only.]

3. Critique of truncation and renormalization as
previously practiced

The truncation and renormalization methods used
in the past (see the Introduction) suffer from nu-
merous deficiencies. First, they are completely ad hoc—
they are only convenient patches, not permanent
solutions. Second, there are several possible variants
of each, which is confusing. Third, it is impossible to
separate errors induced by truncation and renormal-
ization from errors due to taking too small a value

of n1; the errors are all scrambled together. Fourth,
both procedures stop convergence (as n;—) from
proceeding past, af best, the second or third significant
digit. Fifth, truncation is independent of #,; it should
rather diminish as #; — . Sixth, using less trunca-
tion, or a different truncation method, or a different
renormalization method, may make errors smaller or
larger in a way which has not at all been investigated.
Finally, it has not been shown that renormalization
corrections uniformly approach zero as my—w, for
any of the methods; indeed, for the Grant method
(Wiscombe, 1976) we have observed a subset of these
corrections growing without bound as #;—. In sum,
both truncation and renormalization, as presently.
practiced, seem intensely unsatisfactory.
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F1c. 2. Truncated versions of the Mie phase function in Fig. 1 as functions of (a) # and (b) cos. Note
that the vertical scale is linear rather than logarithmic here.
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Perhaps an example may serve to make the above
criticisms more specific. Let the Mie phase function
in Fig. 1 be truncated as shown in Fig. 2, at an angle
of 7.5° causing 479, of the total of scattered photons
to be presumed unscattered. The truncation shown
consists merely in “lopping off” the forward peak
with a horizontal line; the derivative discontinuity
produced thereby is irrelevant, since nowhere in radi-
ative transfer theory is the phase function ever differ-
entiated. To maintain derivative continuity, as do
Hansen (1969a) and Potter (1970), would require
truncation to start at ~20° instead of 7.5° thereby
entailing a considerably greater mutilation of the phase
function. Note again how much more sensible trunca-
tion appears when represented properly, as in Fig. 2b.

Consider a homogeneous nonabsorbing layer of
optical depth 7, having the phase function of Fig. 2.
Let calculations be performed for it with the diamond-
initialized doubling method (Wiscombe, 1976). Bench-
mark results (for the full Mie phase function of Fig. 1)
having at least four significant digits are obtained
from the 8-M method of Section 4.

We find that the use of the fixed truncation of
Fig. 2 virtually stops convergence as my—. The
effect is particularly severe for angles of incident
radiation near grazing. For uo= cos(solar zenith angle)
=0.1, albedo accuracy for r=0.1 never improves
beyond 2D (two decimal places), while 7, increases
from 8 to 120; for po=0.1 and r=1-10, accuracy
never improves past 3D while #, increases from 16
to 120. For p0<0.5 and any optical depth, it is im-
possible to get more than 3D, or occasionally 4D, no
matter how far one increases #;. For r=0.1, the
n1=100 solution ranges in accuracy from 2D for
#0=0.1 to 6D for ue=1; but for r=1-10, the range
is reduced to 2-3D. Thus accuracy tends to deteriorate
as optical depth and/or zenith angle increase, and it
rises above 3D only for the very special case of opti-
cally thin layers at near-normal incidence.

Another experiment was made in which the Mie
phase function was truncated at 3.8° rather than 7.5°.
This enkances error in calculated albedos, compared
to the 7.5° case, for #;<20, and reduces error by
a factor of 2-5 at #,=100. Thus one does not know
a priori if changing the amount of truncation will
improve or worsen one’s results.

The Wiscombe (1976) renormalization was used in
the experiments above. It produces corrections almost
an order of magnitude smaller than the Grant method.
Unlike the Grant method, its corrections e; fall off
uniformly, albeit slowly, as #;—~. For the 7.5°
truncation and for #;=8, |e]|<0.02; for n=16,
l€]<0.003; and for #;=100, [e]<0.0001. For the
3.8° truncation, the ¢; increase almost an order of
magnitude, on the average, even at n,=100. Thus
one is between Scylla and Charybdis—lessening the
mutilation due to truncation only ‘exaggerates that
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due to renormalization. Changing the renormalization
method may also have a pronounced effect, though
only for smaller values of #,: changing from a Grant
to a Wiscombe method changes computed albedos in
anywhere from the second to the fifth decimal place,
when 7,< 8; but by #,=16, these changes are already
confined to the fourth through sixth decimal places.
The changes are larger for layers of larger optical
depth. ’

Our overall impression, garnered from these and
many other numerical experiments, is that the con-
ventional truncation-renormalization approach can be
relied on for only 1-2 significant digits of accuracy,
especially for the smaller values of #1 (<20, say) that
most investigators would prefer to use. It may be
more accurate in some situations, as we have indicated
above, but one can not rely on that. Furthermore,
it is entirely unsatisfactory for ascertaining the limit
as ur—o.

4. The 3-M method

In the following, we shall assume the reader is
familiar with the delta-Eddington paper of Joseph
et al. (1976) in order to avoid needless repetition.

a. Derivation

We approximate the phase function P(cos8) by?

2M—1

P*(cos)=2f6(1—cos®)+(1—f) T 2n+1)x5
X P,(cosb), (13)

where M is essentially the order of the approximation
(M=1 leads to the delta-Eddington approximation)
and where the coefficients are determined by matching
the moments of P* to those X,, of P [cf. Eq. (4)]:

1 x
Xm=£ / P*(cos8) P (cos) sinbdd

0
Q= )Xm, m<2M—1
—{f, m322M

which may be solved wmiquely for the coefficients
X, i.e.,

Xm—f
1—f’

(note that Xg=1 because Xo=1) and nonuniquely for
the truncated fraction f:

f=Xm,

X5 = m=0, ..., 2M—1 (14)

m22M.

2 The use of a Dirac delta-function at the endpoint 8=0 of
the integration interval, rather than in the interior as is more
customary, can be made entirely rigorous (Friedman, 1965,

p. 154).
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The selection of f thus appears somewhat indeter-
minate. However, for consistency with the delta-
Eddington approximation, and because all our work has
led us to believe that it is more important to get
lower order moments correctly than higher order ones,

we fix on
. f=Xan. (15)

This indeterminacy of f corresponds in a limited
sense to the infinite variety of ways in which one
may truncate the phase function “by eye,” as people
have done in the past. However, the scope of the
indeterminacy is dramatically reduced here. Further-
more, the choice in Eq. (15) seems the most natural
in many ways, whereas there was no apparent basis
for selection among previously proposed truncation
procedures.

The delta-function has the following Legendre poly-
nomial expansion (Morse and Feshbach, 1953, p. 729):

5=y =3 F@n+1)P.()Pu(y).  (16)

n=0

Using this formula in Eq. (13) with x=1 and y=cos§,
together with Eqs. (3), (14) and (15), shows that the
approximate phase function and the exact one differ by

00

P(cosf) — P*(cosf)= >

n=2M+1

(2n41) (X —Xor)

X P.(cosd). (17)

Thus the exact and approximate phase functions agree
in the first 2M terms of their Legendre polynomial
expansions, so that they obviously become equal in
the limit M—co. Furthermore, the leading coefficients
of the difference are considerably reduced by having
X2y subtracted from them, i.e., |X,—Xan|<K|X,| for
these coefficients; a price is paid for this in that the
higher terms of the difference (where X,=0) are
inflated, but these terms are relatively of much less
importance since they tend to cancel one another out
when 870 [Eq. (16) with x>y illustrates this can-
cellation process]. Finally, the difference (17) tends
not to grow, and in fact usually diminishes, as P (cosf)
becomes increasingly asymmetric, because then the
X, decrease more slowly and more of the leading
coefficients are small.

The azimuthal average [Eq. (8a)] of the approxi-
mate phase function (13) is

Py =25 (up)+ (=P ), (18)
where
| 0’(#,#')522_—0 )PP, (19)

The second term in Eq. (18) follows in the usual
way from the spherical harmonic addition theorem.
The first term follows from using Eq. (16) and the
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addition theorem:

2
/ [ — ' — (1— ) (1— )} cos1do
0

=‘Z, %(2n+1)/ Po[uu'+(1—pu) (1 —u'2)?} cosgde

= éo $2n+-1)2x P (u)Pr(n’)

=2rd(u—n),

where the final equality follows from putting x=u,
y=up' in Eq. (16).

If Eq. (18) is put into the transfer equation (6),
a transfer equation of identical form is obtained, but
with @ replacing P, 7’ replacing r, and «’ replacing w,
where

dr'= (1—wf)dr, (20a)

o'=(1-f)/(1-ef)w. (20b)

[These are the correct transformations in the general
case; only when w and f are independent of 7 does
(20a) reduce to the form given in Joseph et al. (1976).]
For small values of M, ® is much simpler than P,
and thus the transformed equation of transfer is much
easier to solve.

There is no need to renormalize the phase function
in the -M method. To see this, consider first the
doubling method, wherein it is advantageous to pick M
Gaussian angular quadrature points 0<u; < - - <py<1
on the interval [0,1], with mirror-symmetric points
on [—1,0], for a total of 2 “‘streams.” Then, if the
Gaussian weights are Cy, ..., Cy, the flux conserva-
tion condition arising from Eq. (10) [which turns out
to be simply the quadratured form of Eq. (11)]is

M

3 2 Cil@ (i) +@ (uiy—py) 1= 1

i=1

@1

Replacing @ in this condition by its explicit form (19)
leads to

M 2M—1

13C Y @u1)XaPu(ud[Pa(u)+Pa(—p;)]

=1 m=0

2M—1 M
3 T QDG+ (1P ) CiPalu)
2M—-1 . 1 ‘
—5 T ot DX[1H (-1 TPa ) / Pa(u)du

=XoPo(us)=1.

The sum in the second step is equal to the integral
in the third step by the definition of Gaussian quadra-
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ture. That integral vanishes for all even >0, while
the factor [14 (—1)*] vanishes for all odd #. Thus
only the =0 term contributes; and since X;=1, the
final step follows immediately.

A similar result holds for the discrete ordinate
method (Liou, 1973), where, for M Gaussian quadra-
ture angles —1<g<...<gy<1 on the interval

[—1,1], with corresponding weights C;, ..., Cy, the
flux conservation condition is
M -
3 2 0@ (mim)=1. (22)

LR

=

Replacing @ by its explicit form (19) and noting that
1

Z CyiPn(ﬂi)= Pn(l-")dl-‘)

gl 1

n<2M—1

(by the definition of Gaussian quadrature) shows that
condition (22) is identically satisfied.

The spherical harmonic method, being essentially
identical to the discrete ordinate method for fux
computations (Irvine, 1975), requires no separate dis-
cussion. The proofs that conditions (21) and (22)
are true break down if non-Gaussian quadrature
angles are employed. This argues strongly for choosing
the Gaussian angles.

When the usual diffuse-direct separation is made in
the transfer equation (e.g., Joseph et al., 1976), an
extra term, involving ®(u,u.), is added to the source.
Then when the flux conservation condition arising
from Eq. (10) is enforced, in addition to Eq. (21),
we find a further necessary condition:

32 CLOGp +O(—pm)I=1.  (23)

But this is automatically satisfied when (21) is, since
#; in (21) may be replaced by wo without affecting
any of the subsequent proof. [The discrete ordinate
method analog to condition (23) is likewise identically
satisfied - if condition (22) is.] In the old ways of
renormalizing, (23) was a separate, independent con-
dition to be satisfied, although this was never ex-
plicitly noted.

There is no guarantee that ® > 0 in the 5-M method.
We have (only for M=1 or 2) observed negative
values, but the quality of the results is not affected
since 8— M deals only with moments, and not particular
values, of the phase function.

b. The phase function moments

The viability of the -M method rests, in part,
on being able to compute the low-order phase func-
tion moments {Xn|m=0, ..., 2M} economically. We
have found an exceedingly simple yet elegant proce-
dure for doing this, which is based on a Lobatto
quadrature of Eq. (4) and which even monitors its
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own error, based on the difference between the com-

puted value of X, and unity. The details are given in i

the Appendix.

The importance of an economical Mie computation .

will be grasped immediately by any readers who have
had to do such computations. For those who have
not, we might note that, using our own Mie program
(which has been continually developed and optimized
over a four-year period), 73 min of CDC 7600 time
was required to compute 200 moments of the Mie
phase function of Fig. 1. This involved computing
the phase function at 400 Lobatto angles and inte-
grating the size distribution out to a radius of 40 um
using a Mie size parameter step Ax=0.05 all the way.
While this particular calculation used four or five
times as many angles as one would normally choose
(cf. Table A2 in the Appendix), and achieved an
accuracy several significant digits beyond what one
would normally aim for, it serves to illustrate the
potential voracity of Mie programs. (The moment
calculation just described is used in testing the §-M
method in Section 5b.)

A practical moment computation is normally keyed
to the desired accuracy in fluxes, which in turn de-
pends on M. There is little point in computing mo-
ments to, say, 5D if one only wants fluxes to 2D.
Generally the moments need be accurate to just one
more digit than the fluxes are expected to be.

In all the examples we have examined, only rarely
have we observed deviations from the rule that the
moments X, are positive, and decrease monotonically
as n increases. When these rules are violated, it is
often prima facie evidence that the moments in ques-
tion are inaccurate. This monotonic decrease is par-
ticularly evident for the Henyey-Greenstein phase
function (12), for which X,=g". But our survey has
admittedly been restricted to fairly structureless phase
functions (e.g., Mie phase functions for fairly broad
size distributions). If there is more structure, so that
for example a pronounced peak in the phase function
lines up with a peak in a Legendre polynomial P,,
the corresponding moment X, may easily exceed its
immediate predecessors.

The moments for typical Mie phase functions of
asymmetry factor g fall off much more slowly than g».
But calculated fluxes change by at most a few percent
when such phase functions are replaced by Henyey-
Greenstein ones with the same g (Hansen, 1969a).
This indicates that higher moments must be much
less important for the flux than lower ones, which
undoubtedly accounts for the excellent accuracy
(Section 5) of the 6-M method after correctly match-
ing only the first few moments.

c. Advantages

The advantages of the §-M method are as follows.
First, it is highly accurate for small values of M
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(e.g., for M =8 it can guarantee anywhere from 4-6
significant digits in fluxes). Examples in Section 5
illustrate this point.

Second, it converges rapidly, unlike previous methods
reviewed in the Introduction, which will not converge
past 2-3 significant digits no matter how far you
- increase their equivalent of M.

Third, flux conservation is automatic; no ad hoc
“renormalization” procedures are needed to force it.

Fourth, truncation tends to zero (f—0) as M— o ;
all previous methods have used fixed truncation, or
none at all. Also, the arbitrariness in truncation is to
a large extent removed.

Fifth, Mie computations are shortened, since the
phase function will generally not need to be calculated
at so many angles as previously (see the Appendix).
Also, long tables of phase function values can be re-
placed by skort tables of phase function moments.

Sixth, the computation of the azimuthally averaged
phase function is dramatically simplified—it follows
from just a short series [Eq. (19)7]. Previously, because
getting all the moments X, required too much com-
putation, the author found the integral form [Eq. (8a)]
preferable to the long series [Eq. (8b)]. But numerical
quadrature for that integral proved inaccurate and
lengthy when the phase function was in tabular form.
Interpolation was tricky and could cause great loss
of accuracy, as could a too simple quadrature scheme.
In all, the integral (8a) was difficult; the code to
calculate it was much more complex than that for
Eq. (19), and was an order-of-magnitude more time-
consuming.

5. Examples and discussion of errors

All the following examples pertain to a single homo-
geneous layer with zero upwelling radiation at the
bottom boundary. The albedo and absorptivity of
this layer are computed from the diamond-initialized
doubling method (Wiscombe, 1976) using an initial
layer of optical depth Ar=p;, where p;>0 is the
smallest angular quadrature point. [ Wiscombe (1977)
examines the effect of varying A7r.]

a. Henyey-Greenstein case

Let the layer have a Henyey-Greenstein phase
function (12) with g=0.85 (as shown in Fig. 1). Let
its single-scattering albedo be w=0.9, so that it is
rather highly absorbing. The exact answers are cal-
culated using the 6—M method with M =50; since
[=0.859=9X10-8 for M =50, the approximate phase
function (13) is essentially exact. Six-figure accuracy
or better is attained, as verified by going up to M =65
and observing no changes in these figures.

Fig. 3 shows the absolute value of the error in
albedo as a function of M, for 2{ M <16. Layer
optical depths r=0.1, 1 and 10 are shown in the
columns of Fig. 3, and solar zenith angle cosines
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wo=0.1, 0.2, 0.5 and 1.0 in the rows. Pluses indicate
the error is positive, minuses, negative; although it is
somewhat unconventional, this representation was
deemed best for showing both the absolute magnitude
of the error (which is of more interest than its signed
magnitude) and its oscillatory behavior.

The oscillatory behavior of the error, with an ampli-
tude which declines almost exponentially, is the most.
striking feature of Fig. 3. The pattern shown is uni-
versal; it exhibits only relatively minor changes no
matter what phase function is used and no matter
what the values of optical depth, single-scattering
albedo and surface albedo. [One cannot help but
believe that an analytic form for the error—something
like exp(—aM) sinBM—must exist; we leave this as
an open challenge.] The period of the oscillation is a
strong function of we and is practically independent
of everything else. For uo=0.1, we see somewhat less
than one complete cycle, while there are almost three
complete cycles for wo=0.5 and seven for we=1.
Indeed, for uo=1 the error oscillates with maximum
rapidity, since it changes from plus to minus each
time M increases by 1.

An obvious consequence of the oscillation is that
increasing M may increase the error. This point is
worth emphasizing, for it is a common misperception
that increasing the order of an approximation neces-
sarily reduces the error. This is true only in the
large—if M is increased far enough, the error is reduced.
But increasing M by only 2 or 3 or 4 may actually
have a detrimental effect on accuracy.

If one actually had an analytical form for the error,
which is suggested so strongly by the regularities in
Fig. 3, one could use an extrapolation-to-the-limit
technique, starting from a few results for small values
of M. Note, however, that the pattern may not be
firmly established until M 2 4.

Rapid convergence is the other striking feature of
Fig. 3. By M =38 one is already assured of 3-6 digits
of accuracy in albedo (and absorptivity and trans-
missivity as well). This is particularly impressive in
view of the fact that M =8& N =86 (the number of
terms in the phase function Legendre polynomial
expansion). '

The error falls sharply (1-2 orders of magnitude
or more) as ug increases; this is typical of all trunca-
tion-type methods (cf. Joseph et al., 1976). The smallest
value of wo to be considered always determines the
accuracy one may expect in flux ratios, like albedo.
For fluxes themselves, on the other hand, the errors
shown in Fig. 3 are multiplied by po; the flux errors
for we=0.1, for example, are reduced by an order of
magnitude. The error is virtually independent of 7;
it may increase somewhat with 7, though never by as
much as an order of magnitude.

Fig. 4 shows the absolute value of the absorptivity
error as a function of M; in all other respects it is
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identical to Fig. 3. In general, the absorptivity error
is of opposite sign to the albedo error and no more
than an order of magnitude different from it. There
does not seem to be a uniform tendency for absorptivity
error to be smaller than albedo error, as there is in
the delta-Eddington approximation.

b. Mie case

Let the layer in question have the Mie phase func-
tion shown in Fig. 1 and a single-scattering albedo
w=1, The “exact” answers are provided by the 6-M
method with M =60, for which the truncated fraction
f=0.18. Four-figure accuracy is attained for u,=0.1,
five-figure for pe=0.2 and six-figure or better for
#o2 0.5, as verified by increasing M in steps all the
way up to M=80 (where f=0.11) and observing
convergence to these numbers of figures. We found
the M=60 solution preferable (to solutions with
larger M) because, at large optical depths, it exhibited
less spurious absorption due to round-off error accumu-
lation. In spite of the variable accuracy, errors are all
plotted on the same scale (107-10—%) for ease of
intercomparison,

Fig. 5 shows absolute values of albedo errors as
a function of M for the same set of 7 and wo as in
Figs. 3 and 4. Most of the comments made about
the Henyey-Greenstein example apply here without
change, especially as regards oscillation, rapid con-
vergence and behavior with ug. The only modification
is that errors do tend to fall as r increases here, though
generally by somewhat less than an order of mag-
nitude, and erratically for M <6.

The primary difference from the Henyey-Greenstein
case is that the error here behaves less smoothly as
a function of M, undoubtedly reflecting the con-
siderably greater structure in the Mie phase function.
For example, for uo=1, the monotonic error decrease
is absent here, as is the uniform plus-minus error
pattern (except when 7=10).

Most surprising is that the errors are not notably
larger here compared to the Henyey-Greenstein case,
even though the Henyey-Greenstein Legendre poly-
nomial expansion is much shorter and is therefore,
one would presume, better approximated by small
values of M. The compensating factor in favor of the
Mie phase function is, we believe, that its forward
peak looks much more like a delta-function (see
Fig. 1b). The Mie errors do seem to decay more
slowly than the Henyey-Greenstein ones as M-,
but for the working range of M in Figs. 3 and 3, this
asymptotic separation is not dramatically apparent.

¢. Other cases

We have in fact examined many hundreds of plots
such as are seen in Figs. 3-35, for several other phase
functions and many parameter values. We shall briefly
summarize the conclusions from this survey.
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The error tends to maximize around a single-scat-
tering albedo w=0.5 and to fall off a factor of 2-3
in going from there to either w=0.2 or w=1. In the
range 0.9< w< 1, relevant to water clouds in the solar
spectrum, the error is almost invariant with w.

Errors for 7=0.01 tend to be decidedly smaller
than for r=0.1. Albedo error still oscillates at 7=0.01,
while absorptivity error does not, becoming instead
purely negative and generally monotone decreasing.

Errors at =100 are nearly the same as at 7=10
when w<0.9. For w near unity, errors tend to de-
crease, though by less than an order of magnitude,
in going from r=10 to r=100.

As surface albedo increases from 0 to 0.8 the error
1) falls for w=1, 2) changes little for w=0.5 and 3)
rises for w=0.2. The rises or falls are smaller, the
larger the optical depth, and never exceed an order
of magnitude; the error curve tends to shift up or
down as a whole in this process.

We conclude from this survey that the error curves
in Figs. 3-5 are representative, to within an order
of magnitude, of errors for most other highly asym-
metric phase functions and all other values of w, 7 and
surface albedo.

6. Comparison with discrete ordinate method

Liou (1973) presents five-figure tables of discrete
ordinate method (DOM) results for a g=0.75 Henyey-
Greenstein case and for 2, 4, 8 and 16 streams. This
sort of tabulation is extremely rare in the literature,
and while the chosen phase function is not very asym-
metric [P(#=0)=28; see Fig. 1], we have under-
taken to compare 8-M errors with DOM errors for
this case.

Table 1 gives ratios of DOM to §-M albedo errors
(the DOM 2-stream case is omitted since it is every-
where dramatically inferior to the delta-Eddington
approximation). Entries less than 1 are italicized; in.
these cases (one-eighth of the total) DOM 'error is
smaller, although typically by no more than a factor
of 2. In the great majority of cases 8-M is more ac-
curate, increasingly so as the number of streams
increases. Indeed, by 16 streams (M =8), the §-M
error is 2-3 orders of magnitude smaller. Its rapid
convergence compared to DOM is dramatically high-
lighted here.

The DOM must introduce further approximations
to get upward and downward fluxes, since its quadra-
ture rule is selected to integrate only the complete
angular range, p&[—1,1]. Perhaps this explains the
odd behavior of its albedo error, which is smallest
for grazing (uo=0.1) rather than near-normal (uo=0.9)
incidence. The §-M method behaves exactly oppo-
sitely, which is why the ratios in Table 1 tend to be
largest for uo=0.9 and smallest for uo=0.1. The ex-
ceptions to this tendency, and in general the sort of
erratic behavior one sees in Table 1, are a result of
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TasLE 1. Ratio of DOM (Liou, 1973) to 8-M albedo errors for
4, 8 and 16 streams, for a homogeneous layer having a g=0.75
Henyey-Greenstein phase function. Cases in which DOM is more
accurate are italicized.

Number of streams

w T Ho 4 8 16
1.0 0.25 0.1 0.3 2 6
0.5 5 120 110
0.9 10 20 20
1 0.1 2 3 100
0.5 3 0.4 30
0.9 140 90 110
4 0.1 0.4 5 150
0.5 2 5 140
0.9 5 10 280
16 0.1 0.6 5 160
0.5 3 0.1 290
0.9 10 10 1040
0.8 0.25 0.1 0.4 2 40
0.5 2 5 70
0.9 30 90 280
1 0.1 1 6 780
0.5 0.7 4 410
0.9 20 4 180
4 0.1 1 6 1800
0.5 0.7 4 1030
0.9 20 2 240
16 0.1 1 6 1800
0.5 0.7 4 1030
0.9 20 2 250

the error oscillations of 8- and DOM being out
of phase.

An analog to Table 1 for absorptivity error re-
vealed nothing fundamentally different from what we
have already stated.

7. Summary and conclusions

By extending the idea behind the delta-Eddington
approximation (Joseph et al., 1976) in a natural way,
a technique of great power, which we have dubbed
the 8-M method, is created. It is designed to treat
highly asymmetric phase functions, and it renders
remarkably accurate computed fluxes at very low
orders of angular approximation M, no matter how
great the asymmetry. M =8, or a total of 16 streams,
is sufficient for 3-6 digit accuracy in flux ratios
(albedo, etc.) and 4-6 digit accuracy in fluxes
themselves.

Advantages of the §-M approximation, besides its
high accuracy, are as follows:

1) Flux conservation is automatic—no “renormaliza-
tion” of the phase function is required.
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2) Phase function truncation is put on a much-
sounder and less ad koc footing, and it goes to zero
as M— .

3) Errors behave in a regular and simply under-
stood fashion.

4) Convergence is rapid as M—, although, be-
cause of its oscillatory behavior, error may increase
when M increases by small amounts.

5) Necessary Mie computations and associated
tables are considerably reduced in size.

More subjectively, the §-M approximation has a
certain elegance which the author found lacking in
previous methods for dealing with asymmetry. Also,
it renders the passage to the limit M— e much more
transparent than it has been in the past; indeed, as
reviewed in the Introduction, previous techniques
have had great difficulty converging at all as their
equivalent of M tends to infinity.

Comparison of Liou’s (1973) discrete ordinate
method with §-M for a phase function of asymmetry
factor 0.75 reveals 6-M to be generally equivalent
or superior for M=2 and 4, and superior by two
orders of magnitude for M =8. This superiority can
only be accentuated for more asymmetric phase
functions.

This work has left untouched the problem of the
angular dependence of radiative intensities. Clearly,
6-M may be inadequate to this problem for M small,
if for no other reason than that a very small number
of streams simply cannot resolve the features
in something like the bidirectional reflectivity.
Nevertheless, barring phenomena such as scattering
into an aureole or scattering with near-grazing inci-
dence, where the shape of the forward peak is crucial,
we are optimistic that reasonably good angular in-
formation can be generated by the §-M method
without going to large values of M. However, we
must leave this matter to other investigators.

Acknowledgment. The author would like to thank
Dr. Robert Dickinson for allowing him the freedom
to pursue this work in the face of pressures to become
more ‘relevant.”

APPENDIX

Economical Computation of Phase
Function Moments

Computation of integrals is normally fairly trivial,
but not when they involve a Mie phase function, as
the moment integrals (4) may. To compute a single
value of the Mie phase function in Fig. 1 takes 10 sec
on a CDC 7600 computer, and 100 or more such
values may be needed in doing the moment integrals.
Furthermore, one set of phase function values must
suffice for doing a whole set of moment integrals.
Any quadrature scheme must be carefully designed
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TABLE Al. Accuracy of first 20 moments of Henyey-Greenstein
phase functions with g=0.85, 0.95, as computed by Lobatto
quadrature rules (A1) and (A2). nD means the least accurate mo-
ment is correctly computed to n decimal places.

g=0.85 §=0.95

L Eq. (A1)  Eq. (A2) Eq. (A1)  Eq. (A2)
20 oD 3D 0D 1D
40 3D 8D 0D 5D
60 6D 12D 1D 7D
80 8D 12D 2D 10D

if it is to give reasonably accurate moments without
wasting vast amounts of computer time.

The problem is that the integrand in Eq. (4) has
both a large forward peak and numerous oscillations.
[Pm(cos8) has m zeroes in 8E[0,x] which are about
equally spaced.*] A quadrature rule must resolve the

2n—1 m 2n
<= }
2m+11r\0" \2m+17r

‘peak and the oscillations, at the same time using a
minimal number of quadrature angles.

Hunt (1970) reviews the scanty literature on this
subject and proposes

L
sz% Z I/VZP(,ML)PM(FZ)) (Al)
=1

where u; are the abscissas, and W, the weights for
Lobatto quadrature on [—1,17]. This method is de-
ficient, however, in that the quadrature angles cos—lu;
do not cluster in the forward peak; they are instead
almost equally spaced, e.g., for L=100, the first few
are 0°, 2.2° 4.0°, 5.9° and 7.7°.

Consider instead the quadrature formula

L
Xm=% 3, CiP(cos8;) P, (cosb,) sind,,

=1

(A2)

3 These zeroes {05 |n=1, ..., m} satisfy (Abramowitz and
Stegun, 1965, Eq. 22.16.6)
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where 6; are the abscissas and C; the weights, for
Lobatto quadrature on [0,7]. Here quadrature angles
are clustered in the forward peak; for L=100, the
first few 8, are 0° 0.07°, 0.22°, 0.47° and 0.81°,
Table Al shows the dramatic superiority of (A2)
to (Al) for computing the first 20 moments Xn= g™
of Henyey-Greenstein phase functions with g=0.85
and g=0.95. [Lobatto abscissas and weights were
computed from the algorithm of Michels (1963).]

In general, (A2) gives the first L moments, all to
about the same accuracy, provided L exceeds some
lower bound L, which depends on the particular phase
function. For Henyey-Greenstein phase functions, with
£50.95, Ly=30 gives at least 3D. For cloud phase
functions with drop distribution as described in Sec-
tion 2, but at several wavelengths, Ly can be deduced
from Table A2. Clearly Ly=61 gives at least 3D for
all the wavelengths. This is surprising on two counts.
First, the forward peak resolution is poor at L=61;
for A=0.5 pm, the first few L=61 phase function
values are 9724, 8908, 4123, 741, 136 and 41. Second,
for higher moments like Xgo, the 61 quadrature angles
barely resolve the oscillations [of Pgo(cos8)] at all.
Apparently sind; acts as an important mitigating
factor in (A2), as far as the forward peak is con-
cerned ; and the oscillations do not need to be resolved
any better by virtue of using a Gaussian-type
quadrature.

The right-hand side of Eq. (A2) for m=0 is an
excellent error monitor. If it equals unity to % decimal
places (remember Xo=1), then {X.|m=1, ..., L} will
be accurate to between £2—1 and k41 decimal places.

The success of Eq. (A2) for L&N indicates that
P(cost) sind is a far lower degree polynomial in 6,
than P(cosf) is in cosf. Why this should be so, and
what practical utility it might have, is not obvious,
since the natural formulation of radiative transfer is
in terms of cosd.

Changes in the wavelength in the fourth decimal
place can alter computed moments in the same place.
Changing the Mie size parameter integration increment

TaBLE A2. Accuracy of first (L—1) moments of Mie phase functions at various wavelengths X\, as computed by Eq. (A2). Drop size

distribution is described in Section 2. Liquid water indices of refraction are from Hale and

and Downing and Williams (1975).

Querry (1973), Palmer and Williams (1974)

A 0.5 um 1 um 2 um 10 um
Index of refraction 1.335 1.328-3.35X107¢ 1.306-1.16X1073; 1.220-0.0515¢
g 0.86 0.85 0.84 0.91
P(0°) 9724 2475 678 60
w 1.0 0.9996 0.94 0.68
N 902 453 230 50
L
21 0D 1D 1-2D 4D-6D
41 1-2D 34D 4-5D 26D
61 3D 3-5D 56D 26D
81 3-5D 4-6D 5-7D 26D
101 4-6D 4-6D 26D 26D
201 5-6D 5-7D 26D 26D
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from Ax=0.05 to Ax=0.1 changed computed moments
for A=0.5 um in the fourth place. Hence there seems
little point in computing moments to much better
than 3D.

For polydispersions where the Mie size parameter
never exceeds about 10, the Hunt rule (A1) is actually
preferable to (A2), in that it can give better accuracy
with smaller L. This is particularly apparent near the
Rayleigh limit, where the phase function is nearly
quadratic in cosf but is a much higher degree poly-
nomial in 8. Such cases have not, however, ever in-
volved significant amounts of computation.

REFERENCES

Abramowitz, M., and L. Stegun, Eds., 1965: Handbook of Mathe-
matical Functions. Dover, 1043 pp.

Chandrasekhar, S., 1960: Radiative Transfer. Dover, 393 pp.

Dave, J. V., and J. Canosa, 1974: A direct solution of the ra-
diative transfer equation: Application to atmospheric models
with arbitrary vertical nonhomogeneities. J. Aimos. Sci.,
31, 1089-1101.

Downing, H. D., and D. Williams, 1975: Optical constants of
water in the infrared. J. Geophys. Res., 80, 1656-1661.

Friedman, B., 1965: Principles and Techniques of Applied Mathe-
Matics. Wiley, 315 pp.

Grant, I. P., and G. E. Hunt, 1968: Solution of radiative transfer
problems in planetary atmospheres. Icarus, 9, 526-534.
Hale, G. M., and M. R. Querry, 1973: Optical constants of
water in the 200-nm to 200-um wavelength region. Appl.

Opt., 12, 555-563.

Hansen, J. E., 1969a: Exact and approximate solutions for
multiple scattering by cloudy and hazy planetary atmo-
spheres. J. Aimos. Sci., 26, 478—487.

——, 1969b: Radiative transfer by doubling very thin layers.

- Astrophys. J., 155, 565-573.

——, 1971: Multiple scattering of polarized light in planetary
atmospheres. Part II. Sunlight reflected by terrestrial water
clouds. J. Atmos. Sci., 28, 1400-1426.

——, and L. D. Travis, 1974: Light scattering in planetary
atmospheres. Space Sci. Rev., 16, 527-610.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VOLUME 34

Hunt, G. E., 1970: The generation of angular distribution
coefficients for radiation scattered by a spherical particle.
J. Quant. Spectrosc. Radiat. Transfer, 10, 857-864.

——, 1971a: The effect of coarse angular discretization on cal-
culations of the radiation emerging from a model cloudy
atmosphere. J. Quant. Spectrosc. Radiat. Tronsfer, 11,
309-321.

——, 1971b: A review of computational techniques for analyzing
the transfer of radiation through a model cloudy atmosphere.
J. Quant. Specirosc. Radiat. Transfer, 11, 655-690.

Irvine, W. M., 1975: Multiple scattering in planetary atmo-
spheres. Icarus, 25, 175-204.

Joseph, J., W. J. Wiscombe and J. A. Weinman, 1976: The
delta-Eddington approximation for radiative flux transfer.
J. Aimeos. Sci., 33, 2452-2459.

Liou, K., 1973: A numerical experiment on Chandrasekhar’s
discrete ordinate method for radiative transfer: Applications
to cloudy and hazy atmospheres. J. A¢mos. Sci., 30, 1303~
1326.

Michels, H. H., 1963: Abscissas and weight coefficients for
Lobatto quadrature. Math. Comput., 17, 237-244.

Morse, P. M., and H. Feshbach, 1953: Methods of Theoretical
Physics, Part I. McGraw-Hill, 997 pp.

Palmer, K. F., and D. Williams, 1974: Optical properties of
water in the near infrared. J. Opt. Soc. Amer., 64, 1107-1110,

Potter, J. F., 1970: The delta-function approximation in ra-
diative transfer theory. J. Aémos. Sci., 27, 943-949.

Twomey, S., H. Jacobowitz and H. B. Howell, 1966: Matrix
methods for multiple-scattering problems. J. A#mos. Sci.,
23, 289-296.

van de Hulst, H. C., and K. Grossman, 1968: Multiple light
scattering in planetary atmospheres. The Atmospheres of
Venus and Mars, Brandt and McElroy, Eds., Gordon and
Breach, 428 pp.

Weinman, J. A., 1968: Axially symmetric transfer of light
through a cloud of anisotropically scattering particles.
Icarus, 9, 67-73.

Wiscombe, W. J., 1976: On initialization, error, and fiux con-
servation in the doubling method. J. Quant. Specirosc.
Radiat. Transfer, 16, 637-658. .

——, 1977: Doubling initialization revisited. J. Quant. Specirosc.
Radiai. Transfer (in press).

——, and J. Joseph, 1977 : The range of validity of the Eddington
approximation. Jcarus (in press).



